Nonregular decoupling with stability of two-output systems
Kybernetika, Tome 38 (2002) no. 5, pp. 553-569 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we present a solution to the decoupling problem with stability of linear multivariable systems with 2 outputs, using nonregular static state feedback. The problem is tackled using an algebraic-polynomial approach, and the main idea is to test the conditions for a decoupling compensator with stability to be feedback realizable. It is shown that the problem has a solution if and only if Morse’s list $I_{2}$ is greater than or equal to the infinite and unstable structure of the proper and stable part of the stable interactor of the system. A constructive procedure to find a state feedback, which achieves decoupling with stability, is also presented.
In this paper we present a solution to the decoupling problem with stability of linear multivariable systems with 2 outputs, using nonregular static state feedback. The problem is tackled using an algebraic-polynomial approach, and the main idea is to test the conditions for a decoupling compensator with stability to be feedback realizable. It is shown that the problem has a solution if and only if Morse’s list $I_{2}$ is greater than or equal to the infinite and unstable structure of the proper and stable part of the stable interactor of the system. A constructive procedure to find a state feedback, which achieves decoupling with stability, is also presented.
Classification : 93B11, 93B15, 93C35, 93D05, 93D15
Keywords: linear multivariable system; decoupling; stability
@article{KYB_2002_38_5_a4,
     author = {Ruiz-Le\'on, Javier and Mu\~noz, Jorge A. Torres and Lizaola, Francisco},
     title = {Nonregular decoupling with stability of two-output systems},
     journal = {Kybernetika},
     pages = {553--569},
     year = {2002},
     volume = {38},
     number = {5},
     mrnumber = {1966945},
     zbl = {1265.93203},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a4/}
}
TY  - JOUR
AU  - Ruiz-León, Javier
AU  - Muñoz, Jorge A. Torres
AU  - Lizaola, Francisco
TI  - Nonregular decoupling with stability of two-output systems
JO  - Kybernetika
PY  - 2002
SP  - 553
EP  - 569
VL  - 38
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a4/
LA  - en
ID  - KYB_2002_38_5_a4
ER  - 
%0 Journal Article
%A Ruiz-León, Javier
%A Muñoz, Jorge A. Torres
%A Lizaola, Francisco
%T Nonregular decoupling with stability of two-output systems
%J Kybernetika
%D 2002
%P 553-569
%V 38
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a4/
%G en
%F KYB_2002_38_5_a4
Ruiz-León, Javier; Muñoz, Jorge A. Torres; Lizaola, Francisco. Nonregular decoupling with stability of two-output systems. Kybernetika, Tome 38 (2002) no. 5, pp. 553-569. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a4/

[1] Descusse J., Dion J. M.: On the structure at infinity of linear square decoupled systems. IEEE Trans. Automat. Control AC-27 (1982), 971–974 | DOI | MR | Zbl

[2] Descusse J., Lafay J. F., Malabre M.: Solution of the static-state feedback decoupling problem for linear systems with two outputs. IEEE Trans. Automat. Control AC-30 (1985), 914–918 | DOI | MR | Zbl

[3] Descusse J., Lafay J. F., Malabre M.: Solution to Morgan’s problem. IEEE Trans. Automat. Control 33 (1988), 732–739 | DOI | MR | Zbl

[4] Dion J. M., Commault C.: The minimal delay decoupling problem: Feedback implementation with stability. SIAM J. Control Optim. 26 (1988), 66–82 | DOI | MR | Zbl

[5] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 651–659 | DOI

[6] Herrera A.: Sur le decouplage des systemes lineaires par des lois statiques non regulieres. PhD Thesis, Université de Nantes, Ecole Centrale Nantes 1991

[7] Herrera A., Torres J. A., Ruiz-León J.: The nonregular Morgan’s problem: A polynomial solution for the case of two outputs. In: Proc. European Control Conference (ECC’93), Groningen 1993, pp. 2275–2278

[8] G. J. C. Martínez, Malabre M.: The row by row decoupling problem with stability: A structural approach. IEEE Trans. Automat. Control 39 (1994), 2457–2460 | DOI | MR | Zbl

[9] Morse A. S.: Structural invariants of linear multivariable systems. SIAM J. Control 11 (1973), 446–465 | DOI | MR | Zbl

[10] Ruiz-León J., Zagalak, P., Eldem V.: On the Morgan problem with stability. Kybernetika 32 (1996), 425–441 | MR

[11] Vidyasagar M.: Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, MA 1985 | MR | Zbl

[12] Wolovich W. A., Falb P. L.: Invariants and canonical forms under dynamic compensation. SIAM J. Control Optim. 14 (1976), 996–1008 | DOI | MR | Zbl