Keywords: linear multivariable system with delay; stability
@article{KYB_2002_38_5_a3,
author = {Mondi\'e, Sabine and Dambrine, Michel and Santos, Omar},
title = {Approximation of control laws with distributed delays: a necessary condition for stability},
journal = {Kybernetika},
pages = {541--551},
year = {2002},
volume = {38},
number = {5},
mrnumber = {1966944},
zbl = {1265.93148},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a3/}
}
TY - JOUR AU - Mondié, Sabine AU - Dambrine, Michel AU - Santos, Omar TI - Approximation of control laws with distributed delays: a necessary condition for stability JO - Kybernetika PY - 2002 SP - 541 EP - 551 VL - 38 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a3/ LA - en ID - KYB_2002_38_5_a3 ER -
Mondié, Sabine; Dambrine, Michel; Santos, Omar. Approximation of control laws with distributed delays: a necessary condition for stability. Kybernetika, Tome 38 (2002) no. 5, pp. 541-551. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a3/
[1] Artstein Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Automat. Control AC-27 (1982), 4, 869–879 | DOI | MR | Zbl
[2] Brethé D., Loiseau J. J.: An effective algorithm for finite spectrum assignment of single-input systems with delays. Math. Comput. Simulation 45 (1998), 339–348 | DOI | MR | Zbl
[3] Bellman R., Cooke K. L.: Differential Difference Equations. Academic Press, London 1963 | MR | Zbl
[4] Engelborghs K., Dambrine, M., Roose D.: Limitations of a class of stabilization methods for delay systems. IEEE Trans. Automat. Control AC-46 (2001), 2, 336–339 | DOI | MR | Zbl
[5] Gantmacher F. R.: The Theory of Matrices. Vol. 1. AMS Chelsea Publishing, New York 1959 | MR | Zbl
[6] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable bezout factorizations and feedback control of linear time delay systems. Internat. J. Control 43 (1986), 3, 837–857 | DOI | MR | Zbl
[7] Kolmanovski V. B., Nosov V. R.: Stability of Functional Differential Equations. Academic Press, New York 1986 | MR
[8] Manitius A. Z., Olbrot A. W.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Automat. Control AC-24 (1979), 4, 541–553 | DOI | MR | Zbl
[9] Mathews J. H.: Numerical Methods for Mathematics, Science, and Engineering. Prentice–Hall, Englewood Cliffs, N.J. 1992 | Zbl
[10] Mondié S., Santos O.: Une condition nécessaire pour l’implantation de lois de commande à retards distribués. In: Conférence Internationale Francophone d’Automatique, Lille 2000, pp. 201–206
[11] Morse A. S.: Ring models for delay-differential systems. Automatica 12 (1976), 529–531 | DOI | MR | Zbl
[12] Palmor Z. J.: Modified predictors. In: The Control Handbook (W. Levine, ed.), CRC Press, Boca Raton 1996, Section 10.9
[13] Santos O., Mondié S.: Control laws involving distributed time delays: robustness of the implementation. In: American Control Conference, Chicago 2000, pp. 2479–2480
[14] Smith O. J. M.: Closer control of loops with dead time. Chem. Engrg. Prog. 53 (1959), 217–219
[15] Assche V. Van, Dambrine M., Lafay J. F., Richard J. P.: Some problems arising in the implementation of distributed-delay control laws. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
[16] Vidyasagar M.: Control System Synthesis. MIT Press, Cambridge, MA 1985 | MR | Zbl
[17] Watanabe K., Ito M.: A process model control for linear systems with delay. IEEE Trans. Automat. Control AC-26 (1981), 6, 1261–1268 | DOI | Zbl