Approximation of control laws with distributed delays: a necessary condition for stability
Kybernetika, Tome 38 (2002) no. 5, pp. 541-551 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The implementation of control laws with distributed delays that assign the spectrum of unstable linear multivariable systems with delay in the input requires an approximation of the integral. A necessary condition for stability of the closed-loop system is shown to be the stability of the controller itself. An illustrative multivariable example is given.
The implementation of control laws with distributed delays that assign the spectrum of unstable linear multivariable systems with delay in the input requires an approximation of the integral. A necessary condition for stability of the closed-loop system is shown to be the stability of the controller itself. An illustrative multivariable example is given.
Classification : 93C23, 93C35, 93D05, 93D15
Keywords: linear multivariable system with delay; stability
@article{KYB_2002_38_5_a3,
     author = {Mondi\'e, Sabine and Dambrine, Michel and Santos, Omar},
     title = {Approximation of control laws with distributed delays: a necessary condition for stability},
     journal = {Kybernetika},
     pages = {541--551},
     year = {2002},
     volume = {38},
     number = {5},
     mrnumber = {1966944},
     zbl = {1265.93148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a3/}
}
TY  - JOUR
AU  - Mondié, Sabine
AU  - Dambrine, Michel
AU  - Santos, Omar
TI  - Approximation of control laws with distributed delays: a necessary condition for stability
JO  - Kybernetika
PY  - 2002
SP  - 541
EP  - 551
VL  - 38
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a3/
LA  - en
ID  - KYB_2002_38_5_a3
ER  - 
%0 Journal Article
%A Mondié, Sabine
%A Dambrine, Michel
%A Santos, Omar
%T Approximation of control laws with distributed delays: a necessary condition for stability
%J Kybernetika
%D 2002
%P 541-551
%V 38
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a3/
%G en
%F KYB_2002_38_5_a3
Mondié, Sabine; Dambrine, Michel; Santos, Omar. Approximation of control laws with distributed delays: a necessary condition for stability. Kybernetika, Tome 38 (2002) no. 5, pp. 541-551. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a3/

[1] Artstein Z.: Linear systems with delayed controls: a reduction. IEEE Trans. Automat. Control AC-27 (1982), 4, 869–879 | DOI | MR | Zbl

[2] Brethé D., Loiseau J. J.: An effective algorithm for finite spectrum assignment of single-input systems with delays. Math. Comput. Simulation 45 (1998), 339–348 | DOI | MR | Zbl

[3] Bellman R., Cooke K. L.: Differential Difference Equations. Academic Press, London 1963 | MR | Zbl

[4] Engelborghs K., Dambrine, M., Roose D.: Limitations of a class of stabilization methods for delay systems. IEEE Trans. Automat. Control AC-46 (2001), 2, 336–339 | DOI | MR | Zbl

[5] Gantmacher F. R.: The Theory of Matrices. Vol. 1. AMS Chelsea Publishing, New York 1959 | MR | Zbl

[6] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable bezout factorizations and feedback control of linear time delay systems. Internat. J. Control 43 (1986), 3, 837–857 | DOI | MR | Zbl

[7] Kolmanovski V. B., Nosov V. R.: Stability of Functional Differential Equations. Academic Press, New York 1986 | MR

[8] Manitius A. Z., Olbrot A. W.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Automat. Control AC-24 (1979), 4, 541–553 | DOI | MR | Zbl

[9] Mathews J. H.: Numerical Methods for Mathematics, Science, and Engineering. Prentice–Hall, Englewood Cliffs, N.J. 1992 | Zbl

[10] Mondié S., Santos O.: Une condition nécessaire pour l’implantation de lois de commande à retards distribués. In: Conférence Internationale Francophone d’Automatique, Lille 2000, pp. 201–206

[11] Morse A. S.: Ring models for delay-differential systems. Automatica 12 (1976), 529–531 | DOI | MR | Zbl

[12] Palmor Z. J.: Modified predictors. In: The Control Handbook (W. Levine, ed.), CRC Press, Boca Raton 1996, Section 10.9

[13] Santos O., Mondié S.: Control laws involving distributed time delays: robustness of the implementation. In: American Control Conference, Chicago 2000, pp. 2479–2480

[14] Smith O. J. M.: Closer control of loops with dead time. Chem. Engrg. Prog. 53 (1959), 217–219

[15] Assche V. Van, Dambrine M., Lafay J. F., Richard J. P.: Some problems arising in the implementation of distributed-delay control laws. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999

[16] Vidyasagar M.: Control System Synthesis. MIT Press, Cambridge, MA 1985 | MR | Zbl

[17] Watanabe K., Ito M.: A process model control for linear systems with delay. IEEE Trans. Automat. Control AC-26 (1981), 6, 1261–1268 | DOI | Zbl