Parametrization and reliable extraction of proper compensators
Kybernetika, Tome 38 (2002) no. 5, pp. 521-540 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The polynomial matrix equation $X_lD_r$ $+$ $Y_lN_r$ $=$ $D_k$ is solved for those $X_l$ and $Y_l$ that give proper transfer functions $X_l^{-1}Y_l$ characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function $N_rD_r^{-1}$ such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by $D_k$. The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems.
The polynomial matrix equation $X_lD_r$ $+$ $Y_lN_r$ $=$ $D_k$ is solved for those $X_l$ and $Y_l$ that give proper transfer functions $X_l^{-1}Y_l$ characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function $N_rD_r^{-1}$ such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by $D_k$. The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems.
Classification : 93B52, 93C05, 93D15, 93D21
Keywords: compensator; stabilization
@article{KYB_2002_38_5_a2,
     author = {Kraffer, Ferdinand and Zagalak, Petr},
     title = {Parametrization and reliable extraction of proper compensators},
     journal = {Kybernetika},
     pages = {521--540},
     year = {2002},
     volume = {38},
     number = {5},
     mrnumber = {1966943},
     zbl = {1265.93122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a2/}
}
TY  - JOUR
AU  - Kraffer, Ferdinand
AU  - Zagalak, Petr
TI  - Parametrization and reliable extraction of proper compensators
JO  - Kybernetika
PY  - 2002
SP  - 521
EP  - 540
VL  - 38
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a2/
LA  - en
ID  - KYB_2002_38_5_a2
ER  - 
%0 Journal Article
%A Kraffer, Ferdinand
%A Zagalak, Petr
%T Parametrization and reliable extraction of proper compensators
%J Kybernetika
%D 2002
%P 521-540
%V 38
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a2/
%G en
%F KYB_2002_38_5_a2
Kraffer, Ferdinand; Zagalak, Petr. Parametrization and reliable extraction of proper compensators. Kybernetika, Tome 38 (2002) no. 5, pp. 521-540. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a2/

[1] Callier F. M.: Proper feedback compensators for a strictly proper plant by solving polynomial equations. In: Proc. MMAR 2000. Miedzyzdroje 2000, pp. 55–59

[2] Callier F. M.: Polynomial equations giving a proper feedback compensator for a strictly proper plant. In: Proc. 1st IFAC Symposium on System Structure and Control, Prague 2001

[3] Callier F. M., Desoer C. A.: Multivariable Feedback Systems. Springer, New York 1982

[4] Forney G. D.: Minimal bases of rational vector spaces, with applications to multivariable linear systems. SIAM J. Control 13 (1975), 493–520 | DOI | MR | Zbl

[5] Golub G. H., Loan C. F. Van: Matrix Computations. North Oxford Academic, Oxford 1989

[6] Kailath T.: Linear Systems. Prentice Hall, Englewood Cliffs, N. J. 1980 | MR | Zbl

[7] Kučera V., Zagalak P.: Proper solutions of polynomial equations. In: Proc. IFAC World Congress, Pergamon, Oxford 1999, pp. 357–362

[8] MacDuffee C. C.: The Theory of Matrices. Springer, Berlin 1933 | Zbl

[9] Popov V. M.: Some properties of the control systems with irreducible matrix transfer functions. (Lecture Notes in Mathematics 144.) Springer, Berlin 1969, pp. 169–180 | DOI | MR

[10] Rosenbrock H. H.: State-space and Multivariable Theory. Nelson, London 1970 | MR | Zbl

[11] Rosenbrock H. H., Hayton G. E.: The general problem of pole assignment. Internat. J. Control 27 (1978), 837–852 | DOI | MR | Zbl

[12] Dooren P. M. Van: The generalized eigenstructure problem in linear system theory. IEEE Trans. Automat. Control AC-26 (1981), 111–129 | DOI | MR

[13] Vidyasagar M.: Control System Synthesis. MIT Press, Cambridge, MA 1985 | MR | Zbl

[14] Wang S. H., Davison E. J.: A minimization algorithm for the design of linear multivariable systems. IEEE Trans. Automat. Control AC-18 (1973), 220–225 | DOI | MR | Zbl

[15] Wedderburn J.: Lectures on Matrices. American Mathematical Society, Providence, R.I. 1934 | Zbl

[16] Wolovich W. A.: Linear Multivariable Systems. Springer, New York 1974 | MR | Zbl

[17] Zagalak P., Kučera V.: The general problem of pole assignment: a polynomial approach. IEEE Trans. Automat. Control AC-30 (1985), 286–289 | DOI | MR