@article{KYB_2002_38_5_a11,
author = {Henrion, Didier and Sugimoto, Kenji and \v{S}ebek, Michael},
title = {Rank-one {LMI} approach to robust stability of polynomial matrices},
journal = {Kybernetika},
pages = {643--656},
year = {2002},
volume = {38},
number = {5},
mrnumber = {1966952},
zbl = {1265.93194},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a11/}
}
Henrion, Didier; Sugimoto, Kenji; Šebek, Michael. Rank-one LMI approach to robust stability of polynomial matrices. Kybernetika, Tome 38 (2002) no. 5, pp. 643-656. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a11/
[1] Apkarian P., Tuan H. D.: A sequential SDP/Gauss–Newton algorithm for rank-constrained LMI problems. In: Proc. IEEE Conference on Decision and Control, Phoenix 1999, pp. 2328–2333
[2] Barmish B. R.: New Tools for Robustness of Linear Systems. Macmillan, New York 1994 | Zbl
[3] Bhattacharyya S. P., Chapellat, H., Keel L. H.: Robust Control: The Parametric Approach. Prentice Hall, Upper Saddle River, N.J. 1995 | Zbl
[4] Blondel V. D., Tsitsiklis J. N.: A survey of computational complexity results in systems and control. Automatica 36 (2000), 9, 1249–1274 | DOI | MR | Zbl
[5] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia 1994 | MR | Zbl
[6] Brixius N., Sheng, R., Potra F. A.: sdpHA: a Matlab implementation of homogeneous interior-point algorithms for semidefinite programming. Optimization Methods and Software 11/12 (1999), 583–596 | DOI | MR | Zbl
[7] Ghaoui L. El, Oustry, F., Rami M. Ait: A cone complementarity linearization algorithm for static output feedback and related problems. IEEE Trans. Automat. Control 42 (1997), 8, 1171–1176 | MR
[8] Ghaoui L. El, Commeau J. L.: Lmitool 2. 0 Package: An Interface to Solve LMI Problems. E-Letters on Systems, Control and Signal Processing, Issue 125, January 1999
[9] Ghaoui L. El, (eds.) S. I. Niculescu: Advances in Linear Matrix Inequality Methods in Control. SIAM Advances in Control and Design, Philadelphia, 1999 | MR | Zbl
[10] Fan M., Tits, A., Doyle J.: Robustness in the presence of joint parametric uncertainty and unmodeled dynamics. IEEE Trans. Automat. Control 36 (1991), 1, 25–38 | DOI | MR
[11] Geromel J. C., Peres P. L. D., Bernussou J.: On a convex parameter space method for linear control design of uncertain systems. SIAM J. Control Optim. 29 (1991), 381–402 | DOI | MR | Zbl
[12] Gupta S.: Robust stability analysis using LMI: Beyond small gain and passivity. Internat. J. Robust Nonlinear Control 6 (1996), 953–968 | DOI | MR
[13] Haddad W. M., Bernstein D. S.: Explicit construction of quadratic Lyapunov functions for the small gain, positivity, circle and Popov theorems and their applications to robust stability. Part I: Continuous-time theory. Internat. J. Robust Nonlinear Control 3 (1993), 313–339
[14] Henrion D., Tarbouriech, S., Šebek M.: Rank-one LMI approach to simultaneous stabilization of linear systems. Systems Control Lett. 38 (1999), 2, 79–89 | DOI | MR | Zbl
[15] Henrion D., Bachelier, O., Šebek M.: $\mathcal{D}$-stability of polynomial matrices. Internat. J. Control 74 (2001), 8, 845–856 | MR
[16] Henrion D., Šebek, M., Bachelier O.: Rank-one LMI approach to stability of 2-D polynomial matrices. Multidimensional Systems and Signal Processing 12 (2001), 1, 33–48 | MR | Zbl
[17] Henrion D., Arzelier D., Peaucelle, D., Šebek M.: An LMI condition for robust stability of polynomial matrix polytopes. Automatica 37 (2001), 3, 461–468 | DOI | MR | Zbl
[18] Iwasaki T., Hara S.: Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations. IEEE Trans. Automat. Control 43 (1998), 5, 619–630 | DOI | MR | Zbl
[19] Karl W. C., Verghese G. C.: A sufficient condition for the stability of interval matrix polynomials. IEEE Trans. Automat. Control 38 (1993), 7, 1139–1143 | DOI | MR | Zbl
[20] Kučera V.: Discrete Linear Control: The Polynomial Approach. Wiley, Chichester 1979 | MR
[21] Packard A., Doyle J.: The complex singular value. Automatica 29 (1993), 1, 71–109 | DOI | MR
[22] Peaucelle D., Arzelier D.: New LMI-based conditions for robust ${\mathcal{H}}_2$ performance analysis: In Proc. American Control Conference, Chicago 2000, pp. 317–321
[23] Polyx, Inc.: Polynomial Toolbox for Matlab, Release 2. 0.0, 1999. See the web page www.polyx.cz
[24] Scherer C.: A full-block $\mathcal{S}$-procedure with applications: In: Proc. IEEE Conference on Decision and Control, San Diego 1997, pp. 2602–2607
[25] Scorletti G., Ghaoui L. El: Improved LMI conditions for gain scheduling and related control problems: Internat. J. Robust Nonlinear Control 8 (1998), 845–877 | DOI | MR
[26] Shim D.: Quadratic stability in the circle theorem or positivity theorem. Internat. J. Robust Nonlinear Control 6 (1996), 781–788 | DOI | MR | Zbl
[27] Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38 (1996), 49–95 | DOI | MR | Zbl
[28] Willems J. C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36 (1991), 259–294 | DOI | MR | Zbl
[29] Zhou K., Doyle, J., Glover K.: Robust and Optimal Control. Prentice Hall, Upper Saddle River, N.J. 1996 | Zbl