Fixed poles of $H_2$ optimal control by measurement feedback
Kybernetika, Tome 38 (2002) no. 5, pp. 631-642 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper is concerned with the flexibility in the closed loop pole location when solving the $H_2$ optimal control problem (also called the $H_2$ optimal disturbance attenuation problem) by proper measurement feedback. It is shown that there exists a precise and unique set of poles which is present in the closed loop system obtained by any measurement feedback solution of the $H_2$ optimal control problem. These “$H_2$ optimal fixed poles” are characterized in geometric as well as structural terms. A procedure to design $H_2$ optimal controllers which simultaneously freely assign all the remaining poles, is also provided.
This paper is concerned with the flexibility in the closed loop pole location when solving the $H_2$ optimal control problem (also called the $H_2$ optimal disturbance attenuation problem) by proper measurement feedback. It is shown that there exists a precise and unique set of poles which is present in the closed loop system obtained by any measurement feedback solution of the $H_2$ optimal control problem. These “$H_2$ optimal fixed poles” are characterized in geometric as well as structural terms. A procedure to design $H_2$ optimal controllers which simultaneously freely assign all the remaining poles, is also provided.
Classification : 49N10, 93B27, 93B36, 93B52, 93B55, 93B60
Keywords: measurement feedback solution; fixed pole
@article{KYB_2002_38_5_a10,
     author = {Camart, Jean-Fran\c{c}ois and del-Muro-Cu\'ellar, Basilio and Malabre, Michel},
     title = {Fixed poles of $H_2$ optimal control by measurement feedback},
     journal = {Kybernetika},
     pages = {631--642},
     year = {2002},
     volume = {38},
     number = {5},
     mrnumber = {1966951},
     zbl = {1265.93115},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a10/}
}
TY  - JOUR
AU  - Camart, Jean-François
AU  - del-Muro-Cuéllar, Basilio
AU  - Malabre, Michel
TI  - Fixed poles of $H_2$ optimal control by measurement feedback
JO  - Kybernetika
PY  - 2002
SP  - 631
EP  - 642
VL  - 38
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a10/
LA  - en
ID  - KYB_2002_38_5_a10
ER  - 
%0 Journal Article
%A Camart, Jean-François
%A del-Muro-Cuéllar, Basilio
%A Malabre, Michel
%T Fixed poles of $H_2$ optimal control by measurement feedback
%J Kybernetika
%D 2002
%P 631-642
%V 38
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a10/
%G en
%F KYB_2002_38_5_a10
Camart, Jean-François; del-Muro-Cuéllar, Basilio; Malabre, Michel. Fixed poles of $H_2$ optimal control by measurement feedback. Kybernetika, Tome 38 (2002) no. 5, pp. 631-642. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a10/

[1] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, N.J. 1992 | MR | Zbl

[2] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM Stud. Appl. Math. 15 (1994) | MR | Zbl

[3] Del-Muro-Cuellar B., Malabre M.: Fixed poles of disturbance rejection by dynamic measurement feddback: a geometric approach. Automatica 37 (2001), 2, 231–238 | DOI | MR

[4] Chen B. M., Saberi A., Sannuti, P., Shamash Y.: Construction and parametrization of all static and dynamic ${H}_2$ optimal state feedback solutions, optimal fixed modes, and fixed decoupling zeros. IEEE Trans. Automat. Control 38 (1993), 2, 248–261 | DOI | MR

[5] Malabre M., Kučera V.: Infinite structure and exact model matching problem: a geometric approach. IEEE Trans. Automat. Control AC-29 (1984), 3, 266–268 | DOI

[6] Morse A. S.: Output controllability and system synthesis. SIAM J. Control 9 (1971), 2, 143–148 | DOI | MR | Zbl

[7] Saberi A., Sannuti, P., Chen B. M.: ${H}_2$ Optimal Control. Prentice Hall, Englewood Cliffs, N.J. 1995

[8] Saberi A., Sannuti, P., Stoorvogel A. A.: ${H}_2$ optimal controllers with measurement feedback for continuous-time systems-flexibility in closed-loop pole placement. Automatica 32 (1996), 8, 1201–1209 | MR | Zbl

[9] Schumacher J. M.: Compensator synthesis using $(C,A,B)$-pairs. IEEE Trans. Automat. Control AC-25 (1980), 6, 1133–1138 | DOI | MR | Zbl

[10] Stoorvogel A. A.: The singular ${H}_2$ control problem. Automatica 28 (1992), 3, 627–631 | DOI | MR

[11] Stoorvogel A. A., Saberi, A., Chen B. M.: Full and reduced-order observer-based controller design for ${H}_2$-optimization. Internat. J. Control 58 (1993), 4, 803–834 | DOI | MR

[12] Willems J. C.: Almost invariant subspaces: An approach to high gain feedback design. Part I: Almost controlled invariant subspaces. IEEE Trans. Automat. Control AC-26 (1981), 1, 235–252 | DOI | MR | Zbl

[13] Willems J. C., Commault C.: Disturbance decoupling by measurement feedback with stability or pole placement. SIAM J. Control Optim. 19 (1981), 4, 409–504 | DOI | MR | Zbl

[14] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer Verlag, New York 1985 | MR | Zbl