Keywords: measurement feedback solution; fixed pole
@article{KYB_2002_38_5_a10,
author = {Camart, Jean-Fran\c{c}ois and del-Muro-Cu\'ellar, Basilio and Malabre, Michel},
title = {Fixed poles of $H_2$ optimal control by measurement feedback},
journal = {Kybernetika},
pages = {631--642},
year = {2002},
volume = {38},
number = {5},
mrnumber = {1966951},
zbl = {1265.93115},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a10/}
}
TY - JOUR AU - Camart, Jean-François AU - del-Muro-Cuéllar, Basilio AU - Malabre, Michel TI - Fixed poles of $H_2$ optimal control by measurement feedback JO - Kybernetika PY - 2002 SP - 631 EP - 642 VL - 38 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a10/ LA - en ID - KYB_2002_38_5_a10 ER -
Camart, Jean-François; del-Muro-Cuéllar, Basilio; Malabre, Michel. Fixed poles of $H_2$ optimal control by measurement feedback. Kybernetika, Tome 38 (2002) no. 5, pp. 631-642. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a10/
[1] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, N.J. 1992 | MR | Zbl
[2] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM Stud. Appl. Math. 15 (1994) | MR | Zbl
[3] Del-Muro-Cuellar B., Malabre M.: Fixed poles of disturbance rejection by dynamic measurement feddback: a geometric approach. Automatica 37 (2001), 2, 231–238 | DOI | MR
[4] Chen B. M., Saberi A., Sannuti, P., Shamash Y.: Construction and parametrization of all static and dynamic ${H}_2$ optimal state feedback solutions, optimal fixed modes, and fixed decoupling zeros. IEEE Trans. Automat. Control 38 (1993), 2, 248–261 | DOI | MR
[5] Malabre M., Kučera V.: Infinite structure and exact model matching problem: a geometric approach. IEEE Trans. Automat. Control AC-29 (1984), 3, 266–268 | DOI
[6] Morse A. S.: Output controllability and system synthesis. SIAM J. Control 9 (1971), 2, 143–148 | DOI | MR | Zbl
[7] Saberi A., Sannuti, P., Chen B. M.: ${H}_2$ Optimal Control. Prentice Hall, Englewood Cliffs, N.J. 1995
[8] Saberi A., Sannuti, P., Stoorvogel A. A.: ${H}_2$ optimal controllers with measurement feedback for continuous-time systems-flexibility in closed-loop pole placement. Automatica 32 (1996), 8, 1201–1209 | MR | Zbl
[9] Schumacher J. M.: Compensator synthesis using $(C,A,B)$-pairs. IEEE Trans. Automat. Control AC-25 (1980), 6, 1133–1138 | DOI | MR | Zbl
[10] Stoorvogel A. A.: The singular ${H}_2$ control problem. Automatica 28 (1992), 3, 627–631 | DOI | MR
[11] Stoorvogel A. A., Saberi, A., Chen B. M.: Full and reduced-order observer-based controller design for ${H}_2$-optimization. Internat. J. Control 58 (1993), 4, 803–834 | DOI | MR
[12] Willems J. C.: Almost invariant subspaces: An approach to high gain feedback design. Part I: Almost controlled invariant subspaces. IEEE Trans. Automat. Control AC-26 (1981), 1, 235–252 | DOI | MR | Zbl
[13] Willems J. C., Commault C.: Disturbance decoupling by measurement feedback with stability or pole placement. SIAM J. Control Optim. 19 (1981), 4, 409–504 | DOI | MR | Zbl
[14] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer Verlag, New York 1985 | MR | Zbl