Keywords: linear structured system; graph theoretic characterizations of structural invariants
@article{KYB_2002_38_5_a1,
author = {Commault, Christian and Dion, Jean-Michel and van der Woude, Jacob W.},
title = {Characterization of generic properties of linear structured systems for efficient computations},
journal = {Kybernetika},
pages = {503--520},
year = {2002},
volume = {38},
number = {5},
mrnumber = {1966942},
zbl = {1265.93120},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a1/}
}
TY - JOUR AU - Commault, Christian AU - Dion, Jean-Michel AU - van der Woude, Jacob W. TI - Characterization of generic properties of linear structured systems for efficient computations JO - Kybernetika PY - 2002 SP - 503 EP - 520 VL - 38 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a1/ LA - en ID - KYB_2002_38_5_a1 ER -
%0 Journal Article %A Commault, Christian %A Dion, Jean-Michel %A van der Woude, Jacob W. %T Characterization of generic properties of linear structured systems for efficient computations %J Kybernetika %D 2002 %P 503-520 %V 38 %N 5 %U http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a1/ %G en %F KYB_2002_38_5_a1
Commault, Christian; Dion, Jean-Michel; van der Woude, Jacob W. Characterization of generic properties of linear structured systems for efficient computations. Kybernetika, Tome 38 (2002) no. 5, pp. 503-520. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a1/
[1] Commault C., Dion J. M., Perez A.: Disturbance rejection for structured systems. IEEE Trans. Automat. Control AC-36 (1991), 884–887 | DOI | MR | Zbl
[2] Descusse J., Dion J. M.: On the structure at infinity of linear square decouplable systems. IEEE Trans. Automat. Control AC-27 (1982), 971–974 | DOI | MR
[3] Dion J. M., Commault C.: Smith–McMillan factorisations at infinity of rational matrix functions and their control interpretation. Systems Control Lett. 1 (1982), 312–320 | DOI | MR
[4] Dion J. M., Commault C.: Feedback decoupling of structured systems. IEEE Trans. Automat. Control AC-38 (1993), 1132–1135 | DOI | MR | Zbl
[5] Dion J. M., Commault, C., Montoya J.: Simultaneous decoupling and disturbance rejection – a structural approach. Internat. J. Control 59 (1994), 1325–1344 | DOI | MR | Zbl
[6] Glover K., Silverman L. M.: Characterization of structural controllability. IEEE Trans. Automat. Control AC-21 (1976), 534–537 | DOI | MR | Zbl
[7] Gondran M., Minoux M.: Graphs and Algorithms. Wiley, New York 1984 | MR | Zbl
[8] Hopcroft J. E., Karp R. M.: An $n^{5/2}$ algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2 (1973), 225–231 | DOI | MR
[9] Hosoe S.: Determination of generic dimensions of controllable subspaces and applications. IEEE Trans. Automat. Control AC-25 (1980), 1192–1196 | DOI | MR
[10] Hovelaque V.: Analyse Structurelle, Géométrique, et Graphique des Systèmes Linéaires Structurés, Thèse de Doctorat. Inst. Nat. Polytechnique de Grenoble 1997
[11] Hovelaque V., Commault, C., Dion J. M.: Analysis of linear structured systems using a primal-dual algorithm. Systems Control Lett. 27 (1996), 73–85 | DOI | MR | Zbl
[12] Hovelaque V., Commault, C., Dion J. M.: Disturbance decoupling for linear structured systems via a primal-dual algorithm. Comp. Engrg. Syst. Appl. IMACS Lille (1996), 455–459
[13] Hovelaque V., Djidi N., Commault, C., Dion J. M.: Decoupling problem for structured systems via a primal-dual algorithm. In: Proc. European Control Conference (ECC97), Brussels 1997
[14] Kuhn H. W.: The Hungarian method for the assignment problem. Nav. Res. Log. Quat. 2 (1955), 83–97 | DOI | MR | Zbl
[15] Lin C. T.: Structural controllability. IEEE Trans. Automat. Control AC-19 (1974), 201–208 | DOI | MR | Zbl
[16] Linnemann A.: Decoupling of structured systems. Systems Control Lett. 1 (1981), 79–86 | DOI | MR | Zbl
[17] Murota K.: System analysis by graphs and matroids, Algorithms and Combinatorics. Springer–Verlag, New York 1987 | MR
[18] Reinschke K. J.: Multivariable Control: A Graph–heoretic Approach. Springer–Verlag, New York 1988 | MR
[19] Röbenack K., Reinschke K. J.: Digraph based determination of Jordan block size structure of singular matrix pencils. Linear Algebra Appl. 275–276 (1998), 495–507 | MR | Zbl
[20] Schizas C., Evans F. J.: A graph theoretic approach to multivariable control system design. Automatica 17 (1981), 371–377 | DOI | Zbl
[21] Shields R. W., Pearson J. B.: Structural controllability of multi-input linear systems. IEEE Trans. Automat. Control AC-21 (1976), 203–212 | DOI | MR
[22] Söte W.: Eine graphische Methode zur Ermittlung der Nullstellen in Mehrgrössensystemen. Reglungstechnik 28 (1980), 346–348 | Zbl
[23] Suda N., Wan, B., Ueno I.: The orders of infinite zeros of structured systems. Trans. Soc. Instr. Control Engineers 25 (1989), 346–348
[24] Woude J. W. van der: On the structure at infinity of a structured system. Linear Algebra Appl. 148 (1991), 145–169 | MR
[25] Woude J. W. van der: The generic number of invariant zeros of a structured linear system. SIAM J. Control Optim. 38 (2000), 1, 1–21 | DOI | MR
[26] Woude J. W. van der: The generic canonical form of a regular structured matrix pencil. Linear Algebra Appl. 353 (2002), 267–288 | MR
[27] Woude J. W. van der, Commault, C., Dion J. M.: Invariants for linear structured systems. Internal report of the Laboratoire d’Automatique de Grenoble 2000
[28] Yamada T.: A network flow algorithm to find an elementary I/O matching. Networks 18 (1988), 105–109 | DOI | MR | Zbl