Keywords: optimal decoupling of signal; discrete-time system
@article{KYB_2002_38_4_a6,
author = {Marro, Giovanni and Prattichizzo, Domenico and Zattoni, Elena},
title = {$H_2$ optimal decoupling of previewed signals in the discrete-time case},
journal = {Kybernetika},
pages = {479--492},
year = {2002},
volume = {38},
number = {4},
mrnumber = {1937142},
zbl = {1265.93177},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a6/}
}
TY - JOUR AU - Marro, Giovanni AU - Prattichizzo, Domenico AU - Zattoni, Elena TI - $H_2$ optimal decoupling of previewed signals in the discrete-time case JO - Kybernetika PY - 2002 SP - 479 EP - 492 VL - 38 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a6/ LA - en ID - KYB_2002_38_4_a6 ER -
Marro, Giovanni; Prattichizzo, Domenico; Zattoni, Elena. $H_2$ optimal decoupling of previewed signals in the discrete-time case. Kybernetika, Tome 38 (2002) no. 4, pp. 479-492. http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a6/
[1] Barbagli F., Marro, G., Prattichizzo D.: Solving signal decoupling problems through self-bounded controlled invariants. In: Proc. 39th IEEE Conference on Decision and Control (CDC 2000), Sydney 2000
[2] Basile G., Marro G.: L’invarianza rispetto ai disturbi studiata nello spazio degli stati. In: Rendiconti della LXX Riunione Annuale AEI, paper no. 1-4-01, Rimini 1969
[3] Basile G., Marro G.: Controlled and conditioned invariant subspaces in linear system theory. J. Optim. Theory Appl. 3 (1969), 5, 306–315 | DOI | MR | Zbl
[4] Basile G., Marro G.: A new characterization of some structural properties of linear systems: unknown-input observability, invertibility and functional controllability. Internat. J. Control 17 (1973), 5, 931–943 | DOI | MR | Zbl
[5] Basile G., Hamano, F., Marro G.: Some new results on unknown input observability. In: Proc. Eighth Triennial World Congress of the International Federation of Automatic Control, Kyoto, Japan 1981, pp. 21–25
[6] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, NJ 1992 | MR | Zbl
[7] Bhattacharyya S. P.: Disturbance rejection in linear systems. Internat. J. Systems Science 5 (1974), 7, 931–943 | MR | Zbl
[8] Bitmead R. R., Gevers, M., Wertz V.: Adaptive Optimal Control-The Thinking Man’s GPC. Prentice Hall, Englewood Cliffs, NJ, 1990 | Zbl
[9] Estrada M. Bonilla, Malabre M.: Necessary and sufficient conditions for disturbance decoupling with stability using PID control laws. IEEE Trans. Automat. Control AC-44 (1999), 6, 1311–1315 | DOI | MR
[10] Estrada M. Bonilla, Malabre M.: Structural conditions for disturbance decoupling with stability using proportional and derivative control laws. IEEE Trans. Automat. Control AC-46 (2001), 1, 160–165 | DOI | MR
[11] Chen B. M.: $H_\infty $ control and its applications. (Lecture Notes in Control and Inform. Sciences 235.), Springer–Verlag, New York 1999 | MR | Zbl
[12] Chen B. M.: Robust and $H_\infty $ Control. (Communications and Control Engineering Series.) Springer, New York 2000 | MR | Zbl
[13] Davison E. J., Scherzinger B. M.: Perfect control of the robust servomechanism problem. IEEE Trans. Automat. Control AC-32 (1987), 8, 689–701 | Zbl
[14] Nicolao G. De, Strada S.: On the stability of receding-horizon LQ control with zero-state terminal constraint. IEEE Trans. Automat. Control 42 (1997), 2, 257–260 | DOI | MR | Zbl
[15] Devasia S., Chen, D., Paden B.: Nonlinear inversion-based output tracking. IEEE Trans. Automat. Control 41 (1996), 7, 930–942 | DOI | MR | Zbl
[16] Dorato P.: On the inverse of linear dynamical systems. IEEE. Trans. System Sci. and Cybernetics SSC-5 (1969), 1, 43–48 | DOI | Zbl
[17] Francis B. A.: The optimal linear quadratic time invariant regulator with cheap control. IEEE Trans. Automat. Control AC-24 (1979), 616–621 | DOI | MR | Zbl
[18] Gross E., Tomizuka M.: Experimental flexible beam tip tracking control with a truncated series approximation to uncancelable inverse dynamics. IEEE Trans. Control Syst. Techn. 3 (1994), 4, 382–391 | DOI
[19] Hunt L. R., Meyer, G., Su R.: Noncausal inverses for linear systems. IEEE Trans. Automat. Control 41 (1996), 4, 608–611 | DOI | MR | Zbl
[20] Imai H., Shinozuka M., Yamaki T., Li, D., Kuwana M.: Disturbance decoupling by feedforward and preview control. Trans. ASME J. Dynamic Systems, Measurement Control 105 (1983), 3, 11–17 | DOI | Zbl
[21] Kwon W. H., Pearson A. E.: On feedback stabilization of time-varying discrete linear systems. IEEE Trans. Automat. Control AC-23 (1978), 3, 479–481 | DOI | MR | Zbl
[22] Malabre M., Kučera V.: Infinite structure and exact model matching problem: a geometric approach. IEEE Trans. Automat. Control AC-29 (1982), 3, 266–268 | DOI
[23] Marro G., Fantoni M.: Using preaction with infinite or finite preview for perfect or almost perfect digital tracking. In: Proceedings of the Melecon’96 – 8th Mediterranean Electrotechnical Conference, Bari 1996, Vol. 1, pp. 246–249
[24] Marro G., Prattichizzo, D., Zattoni E.: Geometric insight into discrete-time cheap and singular linear quadratic Riccati (LQR) problems. IEEE Trans. Automat. Control 47 (2002), 1 | DOI | MR
[25] Marro G., Prattichizzo, D., Zattoni E.: ${H}_2$ optimal decoupling of previewed signals with FIR systems. In: Proc. 1st IFAC Symposium on System Structure and Control (SSSC 2001), (P. Horáček, ed.), Prague 2001
[26] Marro G., Prattichizzo, D., Zattoni E.: A unified algorithmic setting for signal–decoupling compensators and unknown–input observers. In: Proc. 39th Conference on Decision and Control (CDC 2000), Sydney 2000
[27] Marro G., Prattichizzo, D., Zattoni E.: A nested computational scheme for discrete-time cheap and singular LQ control. In: Proc. 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation (IMACS 2000), Lausanne 2000
[28] Marro G., Prattichizzo, D., Zattoni E.: Convolution profiles for noncausal inversion of multivariable discrete-time systems. In: Proc. 8th IEEE Mediterranean Conference on Control & Automation (MED 2000), (P. P. Groumpos, N. T. Koussoulas, and P. J. Antsaklis, eds.), University of Patras, Rio 2000
[29] Marro G., Prattichizzo, D., Zattoni E.: An algorithmic solution to the discrete-time cheap and singular LQR problems. In: Proc. 14th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2000), Perpignan 2000
[30] Morse A. S.: Structural invariants of linear multivariable systems. SIAM J. Control 11 (1973), 3, 446–465 | DOI | MR | Zbl
[31] Park S. H., Kim P. S., Kwon O.-K., Kwon W. H.: Estimation and detection of unknown inputs using optimal FIR filter. Automatica 36 (2000), 1481–1488 | DOI | MR | Zbl
[32] Qiu L., Davison E. J.: Performance limitations of non-minimum phase systems in the servomechanism problem. IEEE Trans. Automat. Control 29 (1993), 2, 337–349 | MR | Zbl
[33] Saberi A., Sannuti, P., Chen B. M.: $H_2$ Optimal Control. (System and Control Engineering.) Prentice Hall International, London 1995
[34] Saberi A., Stoorvogel A. A., Sannuti P.: Control of linear systems with regulation and input constraints. (Communications and Control Engineering Series.) Springer, New York 2000 | MR | Zbl
[35] Sain M. K., Massey J. L.: Invertibility of linear time-invariant dynamical systems. IEEE Trans. Automat. Control AC-14 (1969), 2, 141–149 | DOI | MR
[36] Silverman L.: Inversion of multivariable linear systems. IEEE Trans. Automat. Control AC-14 (1969), 3, 270–276 | DOI | MR
[37] Trentelman H. L., Stoorvogel A. A., Hautus M.: Control theory for linear systems. (Communications and Control Engineering Series.) Springer, New York 2001 | MR | Zbl
[38] Willems J. C.: Feedforward control, PID control laws, and almost invariant subspaces. Systems Control Lett. 1 (1982), 4, 277–282 | DOI | MR | Zbl
[39] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer, New York 1985 | MR | Zbl
[40] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM J. Control 8 (1970), 1, 1–18 | DOI | MR | Zbl