A deterministic LQ tracking problem: parametrisation of the controller
Kybernetika, Tome 38 (2002) no. 4, pp. 469-478
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The article discusses an optimal Linear Quadratic (LQ) deterministic control problem when the Youla–Kučera parametrisation of controller is used. We provide a computational procedure for computing a deterministic optimal single-input single-output (SISO) controller from any stabilising controller. This approach allows us to calculate a new optimal LQ deterministic controller from a previous one when the plant has changed. The design based on the Youla –Kučera parametrisation approach is compared to the classical LQ design.
The article discusses an optimal Linear Quadratic (LQ) deterministic control problem when the Youla–Kučera parametrisation of controller is used. We provide a computational procedure for computing a deterministic optimal single-input single-output (SISO) controller from any stabilising controller. This approach allows us to calculate a new optimal LQ deterministic controller from a previous one when the plant has changed. The design based on the Youla –Kučera parametrisation approach is compared to the classical LQ design.
Classification :
49N10, 93C55, 93C62, 93D21
Keywords: LQ deterministic control; tracking problem
Keywords: LQ deterministic control; tracking problem
@article{KYB_2002_38_4_a5,
author = {\v{C}irka, \v{L}ubo\v{s} and Mikle\v{s}, J\'an and Fikar, Miroslav},
title = {A deterministic {LQ} tracking problem: parametrisation of the controller},
journal = {Kybernetika},
pages = {469--478},
year = {2002},
volume = {38},
number = {4},
mrnumber = {1937141},
zbl = {1265.93174},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a5/}
}
Čirka, Ľuboš; Mikleš, Ján; Fikar, Miroslav. A deterministic LQ tracking problem: parametrisation of the controller. Kybernetika, Tome 38 (2002) no. 4, pp. 469-478. http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a5/
[1] Dostál P., Mészáros, A., Mikleš J.: A modified LQ tracking problem. Journal Electrical Engrg. 45 (1994), 4, 129–133
[2] Hunt K. J., Šebek M.: Implied polynomial matrix equations in multivariable stochastic optimal control. Automatica 27 (1991), 2, 395–398 | DOI | MR | Zbl
[3] Kučera V.: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979 | MR | Zbl
[4] Kučera V.: New results in state estimation and regulation. Automatica 17 (1981), 745–748 | DOI | MR
[5] Kwakernaak H., Sivan R.: Linear Optimal Control Systems. Wiley, New York 1972 | MR | Zbl
[6] Vidyasagar M.: Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, MA 1985 | MR | Zbl