@article{KYB_2002_38_4_a4,
author = {Jerbi, Hamadi},
title = {On the stabilizability of some classes of bilinear systems in $\Bbb R^3$},
journal = {Kybernetika},
pages = {457--468},
year = {2002},
volume = {38},
number = {4},
mrnumber = {1937140},
zbl = {1265.93201},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a4/}
}
Jerbi, Hamadi. On the stabilizability of some classes of bilinear systems in $\Bbb R^3$. Kybernetika, Tome 38 (2002) no. 4, pp. 457-468. http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a4/
[1] Andriano V.: Some results on global and semi global stabilization of affines systems. Systems Control Lett. 33 (1998), 259–263 | DOI | MR
[2] Cima A., Llibre J.: Algebric and topological classification of the homogeneous cubic vector field in the plane. J. Math. Anal. Appl. 14 (1990), 420–448 | DOI | MR
[3] Čelikovský S.: On the stabilization of the homogeneuos bilinear systems. Systems Control Lett. 21 (1993), 503–510 | DOI | MR
[4] Chabour R., Sallet, G., Vivalda J. C.: Stabilization of nonlinear two dimensional system: a bilinear approach. Mathematics of Control, Signals and Systems (1996), 224–246 | MR
[5] Chabour O., Vivalda J. C.: Remark on local and global stabilization of homogeneuos bilinear systems. Systems Control Lett. 41 (2000), 141–143 | DOI | MR
[6] Gauthier J. P., Kupka I.: A separation principle for bilinear systems with dissipative drift. IEEE Trans. Automat. Control AC–37 (1992), 12, 1970–1974 | DOI | MR | Zbl
[7] Hahn W.: Stability of Motion. Springer Verlag, Berlin 1967 | MR | Zbl
[8] Hammouri H., Marques J. C.: Stabilization of homogeneuos bilinear systems. Appl. Math. Lett. 7 (1994), 1, 23–28 | DOI | MR
[9] Iggider A., Kalitine, B., Outbib R.: Semidefinite Lyapunov Functions Stability and Stabilization. (Mathematics of Control, Signals, and Systems 9.) Springer–Verlag, London 1996, pp. 95–106 | DOI | MR
[10] Iggider A., Kalitine, B., Sallet G.: Lyapunov theorem with semidefinite functions proceedings. In: Proc. 14th Triennial IFAC World Congress IFAC 99, Beijing 1999, pp. 231–236
[11] Jerbi H., Hammami M. A. C.Vivalda J.: On the stabilization of homogeneous affine systems. In: Proc. 2nd IEEE Mediterranean Symposium on New Directions in Control $\&$ Automation T2.3.4, 1994, pp. 319–326
[12] Jurdjevic V., Quinn J. P.: Controllability and stability. J. of Differentials 28 (1978), 381–389 | DOI | MR | Zbl
[13] Ryan E. P., Buckingham N. J.: On asymptotically stabilizing feedback control of bilinear systems. IEEE Trans. Automat. Control AC–28 (1983), 8, 863–864 | Zbl