On the stabilizability of some classes of bilinear systems in $\Bbb R^3$
Kybernetika, Tome 38 (2002) no. 4, pp. 457-468 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks.
In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks.
Classification : 93C10, 93D15
Keywords: bilinear system; stabilization by feedback
@article{KYB_2002_38_4_a4,
     author = {Jerbi, Hamadi},
     title = {On the stabilizability of some classes of bilinear systems in $\Bbb R^3$},
     journal = {Kybernetika},
     pages = {457--468},
     year = {2002},
     volume = {38},
     number = {4},
     mrnumber = {1937140},
     zbl = {1265.93201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a4/}
}
TY  - JOUR
AU  - Jerbi, Hamadi
TI  - On the stabilizability of some classes of bilinear systems in $\Bbb R^3$
JO  - Kybernetika
PY  - 2002
SP  - 457
EP  - 468
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a4/
LA  - en
ID  - KYB_2002_38_4_a4
ER  - 
%0 Journal Article
%A Jerbi, Hamadi
%T On the stabilizability of some classes of bilinear systems in $\Bbb R^3$
%J Kybernetika
%D 2002
%P 457-468
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a4/
%G en
%F KYB_2002_38_4_a4
Jerbi, Hamadi. On the stabilizability of some classes of bilinear systems in $\Bbb R^3$. Kybernetika, Tome 38 (2002) no. 4, pp. 457-468. http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a4/

[1] Andriano V.: Some results on global and semi global stabilization of affines systems. Systems Control Lett. 33 (1998), 259–263 | DOI | MR

[2] Cima A., Llibre J.: Algebric and topological classification of the homogeneous cubic vector field in the plane. J. Math. Anal. Appl. 14 (1990), 420–448 | DOI | MR

[3] Čelikovský S.: On the stabilization of the homogeneuos bilinear systems. Systems Control Lett. 21 (1993), 503–510 | DOI | MR

[4] Chabour R., Sallet, G., Vivalda J. C.: Stabilization of nonlinear two dimensional system: a bilinear approach. Mathematics of Control, Signals and Systems (1996), 224–246 | MR

[5] Chabour O., Vivalda J. C.: Remark on local and global stabilization of homogeneuos bilinear systems. Systems Control Lett. 41 (2000), 141–143 | DOI | MR

[6] Gauthier J. P., Kupka I.: A separation principle for bilinear systems with dissipative drift. IEEE Trans. Automat. Control AC–37 (1992), 12, 1970–1974 | DOI | MR | Zbl

[7] Hahn W.: Stability of Motion. Springer Verlag, Berlin 1967 | MR | Zbl

[8] Hammouri H., Marques J. C.: Stabilization of homogeneuos bilinear systems. Appl. Math. Lett. 7 (1994), 1, 23–28 | DOI | MR

[9] Iggider A., Kalitine, B., Outbib R.: Semidefinite Lyapunov Functions Stability and Stabilization. (Mathematics of Control, Signals, and Systems 9.) Springer–Verlag, London 1996, pp. 95–106 | DOI | MR

[10] Iggider A., Kalitine, B., Sallet G.: Lyapunov theorem with semidefinite functions proceedings. In: Proc. 14th Triennial IFAC World Congress IFAC 99, Beijing 1999, pp. 231–236

[11] Jerbi H., Hammami M. A. C.Vivalda J.: On the stabilization of homogeneous affine systems. In: Proc. 2nd IEEE Mediterranean Symposium on New Directions in Control $\&$ Automation T2.3.4, 1994, pp. 319–326

[12] Jurdjevic V., Quinn J. P.: Controllability and stability. J. of Differentials 28 (1978), 381–389 | DOI | MR | Zbl

[13] Ryan E. P., Buckingham N. J.: On asymptotically stabilizing feedback control of bilinear systems. IEEE Trans. Automat. Control AC–28 (1983), 8, 863–864 | Zbl