Estimation of variances in a heteroscedastic RCA(1) model
Kybernetika, Tome 38 (2002) no. 4, pp. 405-424 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper concerns with a heteroscedastic random coefficient autoregressive model (RCA) of the form $X_t=b_tX_{t-1}+Y_t$. Two different procedures for estimating $\sigma _t^2=EY_t^2, \sigma _b^2=Eb_t^2$ or $\sigma _B^2=E(b_t- Eb_t)^2$, respectively, are described under the special seasonal behaviour of $\sigma _t^2$. For both types of estimators strong consistency and asymptotic normality are proved.
The paper concerns with a heteroscedastic random coefficient autoregressive model (RCA) of the form $X_t=b_tX_{t-1}+Y_t$. Two different procedures for estimating $\sigma _t^2=EY_t^2, \sigma _b^2=Eb_t^2$ or $\sigma _B^2=E(b_t- Eb_t)^2$, respectively, are described under the special seasonal behaviour of $\sigma _t^2$. For both types of estimators strong consistency and asymptotic normality are proved.
Classification : 62F10, 62F12, 62M10
Keywords: random coefficient autoregressive model
@article{KYB_2002_38_4_a1,
     author = {Jane\v{c}kov\'a, Hana},
     title = {Estimation of variances in a heteroscedastic {RCA(1)} model},
     journal = {Kybernetika},
     pages = {405--424},
     year = {2002},
     volume = {38},
     number = {4},
     mrnumber = {1937137},
     zbl = {1264.62069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a1/}
}
TY  - JOUR
AU  - Janečková, Hana
TI  - Estimation of variances in a heteroscedastic RCA(1) model
JO  - Kybernetika
PY  - 2002
SP  - 405
EP  - 424
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a1/
LA  - en
ID  - KYB_2002_38_4_a1
ER  - 
%0 Journal Article
%A Janečková, Hana
%T Estimation of variances in a heteroscedastic RCA(1) model
%J Kybernetika
%D 2002
%P 405-424
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a1/
%G en
%F KYB_2002_38_4_a1
Janečková, Hana. Estimation of variances in a heteroscedastic RCA(1) model. Kybernetika, Tome 38 (2002) no. 4, pp. 405-424. http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a1/

[1] Basu A. K., Roy S. Sen: On a rates of convergence in the central limit theorem for parameter estimation in random coefficient autoregressive models. J. Indian Statist. Assoc. 26 (1988), 19–25 | MR

[2] Davidson J.: Stochastic Limit Theory. Oxford University Press, New York 1994 | MR | Zbl

[3] Hwang S. Y., Basawa I. V.: Parameter estimation for generalized random coefficient autoregressive processes. J. Statist. Plann. Inference 68 (1998), 2, 323–337 | DOI | MR | Zbl

[4] Janečková H.: RCA(1) model with heteroscedasticity. Preprint 13, Charles University, Prague 2000

[5] Janečková H.: RCA(1) model with heteroscedasticity. In: Proceedings of the $11^{th}$ Summer School of the Union of the Czech Mathematicians and Physicists Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of the Czech Mathematicians and Physicists, Prague 2001, pp. 82–91

[6] Janečková H.: On the relation between heteroscedastic RCA and non-stationary ARCH processes. In: Proceedings of the Conference Mathematical Methods in Economics MME 2001 (M. Dlouhý, ed.), Czech Society for Operations Research, Hradec Králové 2001, pp. 87–92

[7] Janečková H.: Some generalizations in a heteroscedastic RCA(1) model. Acta Univ. Carolin.–Math. Phys. 1 (2002). To appear | MR | Zbl

[8] Janečková H.: Time Series with Changing Parameters. Doctoral Thesis, Charles University, Prague 2002

[9] Jürgens U.: The estimation of a random coefficient AR(1) process under moment conditions. Statist. Hefte 26 (1985), 237–249 | DOI | MR | Zbl

[10] Nicholls D. F., Quinn B. G.: Random Coefficient Autoregressive Models: An Introduction (Lecture Notes in Statistics 11). Springer-Verlag, New York 1982 | MR

[11] Štěpán J.: Teorie Pravděpodobnosti (The Theory of Probability). Academia, Prague 1987

[12] Tsay R. S.: Conditional heteroscedastic time series models. J. Amer. Statist. Assoc. 82 (1987), 398, 590–604 | MR | Zbl