@article{KYB_2002_38_4_a0,
author = {Pr\'a\v{s}kov\'a, Zuzana},
title = {Bootstrap in nonstationary autoregression},
journal = {Kybernetika},
pages = {389--404},
year = {2002},
volume = {38},
number = {4},
mrnumber = {1937136},
zbl = {1264.62072},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a0/}
}
Prášková, Zuzana. Bootstrap in nonstationary autoregression. Kybernetika, Tome 38 (2002) no. 4, pp. 389-404. http://geodesic.mathdoc.fr/item/KYB_2002_38_4_a0/
[1] Basawa I. V., Mallik A. K., McCormick W. P., Taylor R. L.: Bootstrapping explosive autoregressive processes. Ann. Statist. 17 (1989), 1479–1486 | DOI | MR | Zbl
[2] Basu A. K., Roy S. Sen: On rates of convergence in the central limit theorem for parameter estimation in general autoregressive model. Statistics 21 (1990), 461–470 | DOI | MR
[3] Bose A.: Edgeworth correction by bootstrap in autoregression. Ann. Statist. 16 (1988), 1709–1722 | DOI | MR
[4] Brockwell P. J., Davis R. A.: Time Series: Theory and Methods. Springer–Verlag, New York 1987 | MR | Zbl
[5] Brown B. M.: Martingale central limit theorems. Ann. Math. Statist. 42 (1971), 59–66 | DOI | MR | Zbl
[6] Datta S.: On asymptotic properties of bootstrap for AR(1) processes. J. Statist. Plann. Inference 53 (1996), 361–374 | DOI | MR | Zbl
[7] Davidson J.: Stochastic Limit Theory. Oxford University Press, New York 1994 | MR | Zbl
[8] Dürr D., Loges W.: Large deviation results and rates in the central limit theorem for parameter estimators for autoregressive processes. Sankhy$\overline{\mathrm a}$ 47 (1985), Series A, 6–24 | MR | Zbl
[9] Ferretti N., Romo J.: Unit root bootstrap tests for AR(1) models. Biometrika 83 (1996), 849–860 | DOI | MR | Zbl
[10] Hall P., Heyde C. C.: Martingale Limit Theory and Its Application. Academic Press, New York 1980 | MR | Zbl
[11] Heimann G., Kreiss J. P.: Bootstrapping general first order autoregression. Statist. Probab. Lett. 30 (1996), 87–98 | DOI | MR | Zbl
[12] Kreiss J. P., Franke J.: Bootstrapping stationary autoregressive moving-average models. J. Time Ser. Anal. 13 (1992), 297–31 | DOI | MR | Zbl
[13] Kreiss J. P.: Asymptotical properties of residual bootstrap for autoregression. Preprint, TU Braunschweig 1997
[14] Liu R. Y.: Bootstrap procedures under some non-i. i.d. models. Ann. Statist. 16 (1988), 1696–1708 | MR | Zbl
[15] Michel R., Pfanzagl J.: The accuracy of the normal approximations for minimum contrast estimate. Z. Wahrsch. Verw. Gebiete 18 (1971), 73–84 | DOI | MR
[16] Prášková Z.: A contribution to bootstrapping autoregressive processes. Kybernetika 31 (1995), 359–373 | MR
[17] Prášková Z.: Bootstrapping in autoregression with heteroscedasticities. Working paper, Charles University 1997. Unpublished
[18] Tjøstheim D., Paulsen J.: Least squares estimates and order determination procedures for autoregressive process with a time dependent variance. J. Time Ser. Anal. 6 (1985), 117–138 | DOI | MR
[19] Wu C. F. J.: Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist. 14 (1986), 1261–1295 | DOI | MR | Zbl