Information boundedness principle in fuzzy inference process
Kybernetika, Tome 38 (2002) no. 3, pp. 327-338 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The information boundedness principle requires that the knowledge obtained as a result of an inference process should not have more information than that contained in the consequent of the rule. From this point of view relevancy transformation operators as a generalization of implications are investigated.
The information boundedness principle requires that the knowledge obtained as a result of an inference process should not have more information than that contained in the consequent of the rule. From this point of view relevancy transformation operators as a generalization of implications are investigated.
Classification : 03B52, 03E72, 68T37
Keywords: inference; fuzzy system modeling
@article{KYB_2002_38_3_a8,
     author = {Sarkoci, Peter and \v{S}abo, Michal},
     title = {Information boundedness principle in fuzzy inference process},
     journal = {Kybernetika},
     pages = {327--338},
     year = {2002},
     volume = {38},
     number = {3},
     mrnumber = {1944313},
     zbl = {1265.68278},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a8/}
}
TY  - JOUR
AU  - Sarkoci, Peter
AU  - Šabo, Michal
TI  - Information boundedness principle in fuzzy inference process
JO  - Kybernetika
PY  - 2002
SP  - 327
EP  - 338
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a8/
LA  - en
ID  - KYB_2002_38_3_a8
ER  - 
%0 Journal Article
%A Sarkoci, Peter
%A Šabo, Michal
%T Information boundedness principle in fuzzy inference process
%J Kybernetika
%D 2002
%P 327-338
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a8/
%G en
%F KYB_2002_38_3_a8
Sarkoci, Peter; Šabo, Michal. Information boundedness principle in fuzzy inference process. Kybernetika, Tome 38 (2002) no. 3, pp. 327-338. http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a8/

[1] Dubois D., Prade H.: Properties of measures of information in evidence and possibility theories. Fuzzy Sets and Systems 100 (1999), Supplement, 35–49 | MR

[2] Klir G. J., Bo Y.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice–Hall, Englewood Cliffs, N. J. 1995 | MR | Zbl

[3] Kolesárová A., Kerre E. E.: Computational rule of inference based on triangular norms. In: Fuzzy If–Then Rules in Computational Inteligence. Theory and Applications (Da Ruan and E. E. Kerre, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 61–80

[4] Nelsen R. B.: An Introduction to Copulas. Lecture Notes in Statistics, Springer, Berlin 1999 | MR | Zbl

[5] Šabo M., Kolesárová, A., Varga Š.: RET operators generated by triangular norms and copulas. Internat. J. Uncertainty and Knowledge–Based Systems 9 (2001), 2, 169–181 | DOI | MR | Zbl

[6] Yager R. R.: Global requirements for implication operators in fuzzy modus ponens. Fuzzy Sets and Systems 106 (1999), 3–10 | MR | Zbl

[7] Yager R. R.: Uninorms in fuzzy modeling. Fuzzy Sets and Systems 122 (2001), 167–175 | DOI | MR