@article{KYB_2002_38_3_a8,
author = {Sarkoci, Peter and \v{S}abo, Michal},
title = {Information boundedness principle in fuzzy inference process},
journal = {Kybernetika},
pages = {327--338},
year = {2002},
volume = {38},
number = {3},
mrnumber = {1944313},
zbl = {1265.68278},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a8/}
}
Sarkoci, Peter; Šabo, Michal. Information boundedness principle in fuzzy inference process. Kybernetika, Tome 38 (2002) no. 3, pp. 327-338. http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a8/
[1] Dubois D., Prade H.: Properties of measures of information in evidence and possibility theories. Fuzzy Sets and Systems 100 (1999), Supplement, 35–49 | MR
[2] Klir G. J., Bo Y.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice–Hall, Englewood Cliffs, N. J. 1995 | MR | Zbl
[3] Kolesárová A., Kerre E. E.: Computational rule of inference based on triangular norms. In: Fuzzy If–Then Rules in Computational Inteligence. Theory and Applications (Da Ruan and E. E. Kerre, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 61–80
[4] Nelsen R. B.: An Introduction to Copulas. Lecture Notes in Statistics, Springer, Berlin 1999 | MR | Zbl
[5] Šabo M., Kolesárová, A., Varga Š.: RET operators generated by triangular norms and copulas. Internat. J. Uncertainty and Knowledge–Based Systems 9 (2001), 2, 169–181 | DOI | MR | Zbl
[6] Yager R. R.: Global requirements for implication operators in fuzzy modus ponens. Fuzzy Sets and Systems 106 (1999), 3–10 | MR | Zbl
[7] Yager R. R.: Uninorms in fuzzy modeling. Fuzzy Sets and Systems 122 (2001), 167–175 | DOI | MR