Validation sets in fuzzy logics
Kybernetika, Tome 38 (2002) no. 3, pp. 319-326 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The validation set of a formula in a fuzzy logic is the set of all truth values which this formula may achieve. We summarize characterizations of validation sets of $S$-fuzzy logics and extend them to the case of $R$-fuzzy logics.
The validation set of a formula in a fuzzy logic is the set of all truth values which this formula may achieve. We summarize characterizations of validation sets of $S$-fuzzy logics and extend them to the case of $R$-fuzzy logics.
Classification : 03B52
Keywords: validation set; $S$-fuzzy logic; $R$-fuzzy logic
@article{KYB_2002_38_3_a7,
     author = {Hor\v{c}{\'\i}k, Rostislav and Navara, Mirko},
     title = {Validation sets in fuzzy logics},
     journal = {Kybernetika},
     pages = {319--326},
     year = {2002},
     volume = {38},
     number = {3},
     mrnumber = {1944312},
     zbl = {1265.03019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a7/}
}
TY  - JOUR
AU  - Horčík, Rostislav
AU  - Navara, Mirko
TI  - Validation sets in fuzzy logics
JO  - Kybernetika
PY  - 2002
SP  - 319
EP  - 326
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a7/
LA  - en
ID  - KYB_2002_38_3_a7
ER  - 
%0 Journal Article
%A Horčík, Rostislav
%A Navara, Mirko
%T Validation sets in fuzzy logics
%J Kybernetika
%D 2002
%P 319-326
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a7/
%G en
%F KYB_2002_38_3_a7
Horčík, Rostislav; Navara, Mirko. Validation sets in fuzzy logics. Kybernetika, Tome 38 (2002) no. 3, pp. 319-326. http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a7/

[1] Butnariu D., Klement E. P., Zafrany S.: On triangular norm-based propositional fuzzy logics. Fuzzy Sets and Systems 69 (1995), 241–255 | DOI | MR | Zbl

[2] Chang C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 | DOI | MR | Zbl

[3] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many-valued Reasoning. (Trends in Logic 7.) Kluwer, Dordrecht 1999 | MR | Zbl

[4] Dubois D., Prade H.: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85–121 | DOI | MR | Zbl

[5] Esteva F., Godo L., Hájek, P., Navara M.: Residuated fuzzy logics with an involutive negation. Arch. Math. Logic 39 (2000), 103–124 | DOI | MR

[6] Gehrke M., Walker, C., Walker E. A.: DeMorgan systems on the unit interval. Internat. J. Intelligent Syst. 11 (1996), 733–750 | DOI | Zbl

[7] Gödel K.: Zum intuitionistischen Aussagenkalkül. Anz. Österreich. Akad. Wiss. Math.–Natur. Kl. 69 (1932), 65–66

[8] Gottwald S.: Mehrwertige Logik. Akademie–Verlag, Berlin 1989 | MR | Zbl

[9] Gottwald S.: Fuzzy Sets and Fuzzy Logic. Foundations of Application – from a Mathematical Point of View. Vieweg, Braunschweig – Wiesbaden 1993 | MR | Zbl

[10] Hájek P.: Metamathematics of Fuzzy Logic. (Trends in Logic 4.) Kluwer, Dordrecht 1998 | MR | Zbl

[11] Hájek P., Godo, L., Esteva F.: A complete many-valued logic with product-conjunction. Arch. Math. Logic 35 (1996), 191–208 | DOI | MR | Zbl

[12] Hekrdla J., Klement, E.š P., Navara M.: Two approaches to fuzzy propositional logics. Multiple–valued Logic, accepted | Zbl

[13] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic 8.) Kluwer, Dordrecht 2000 | MR | Zbl

[14] Klement E. P., Navara M.: Propositional fuzzy logics based on Frank t-norms: A comparison. In: Fuzzy Sets, Logics and Reasoning about Logics (D. Dubois, E. P. Klement and H. Prade, eds., Applied Logic Series 15), Kluwer, Dordrecht 1999, pp. 17–38 | MR | Zbl

[15] Klement E. P., Navara M.: A survey on different triangular norm-based fuzzy logics. Fuzzy Sets and Systems 101 (1999), 241–251 | MR | Zbl

[16] Ling C. M.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 | MR

[17] Łukasiewicz J.: Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls. Comptes Rendus Séances Société des Sciences et Lettres Varsovie cl. III 23 (1930), 51–77

[18] Navara M.: Satisfiability in fuzzy logics. Neural Network World 10 (2000), 845–858

[19] Navara M.: Product Logic is Not Compact. Research Report No. CTU–CMP–2001–09, Center for Machine Perception, Czech Technical University, Prague 2001

[20] Nguyen H. T., Walker E.: A First Course in Fuzzy Logic. CRC Press, Boca Raton 1997 | MR | Zbl

[21] Novák V.: On the syntactico-semantical completeness of first-order fuzzy logic. Part I – Syntactical aspects; Part II – Main results. Kybernetika 26 (1990), 47–66, 134–154

[22] Pedrycz W.: Fuzzy relational equations with generalized connectives and their applications. Fuzzy Sets and Systems 10 (1983), 185–201 | MR | Zbl

[23] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, Amsterdam 1983 | MR | Zbl

[24] Zadeh L. A.: Fuzzy sets. Inform. and Control 8 (1965), 338–353 | DOI | MR | Zbl