@article{KYB_2002_38_3_a6,
author = {Dvure\v{c}enskij, Anatolij},
title = {States on unital partially-ordered groups},
journal = {Kybernetika},
pages = {297--318},
year = {2002},
volume = {38},
number = {3},
mrnumber = {1944311},
zbl = {1265.06052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a6/}
}
Dvurečenskij, Anatolij. States on unital partially-ordered groups. Kybernetika, Tome 38 (2002) no. 3, pp. 297-318. http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a6/
[1] Bigard A., Keimel K., Wolfenstein S.: Groupes et Anneax Réticulés. Springer–Verlag, Berlin – Heidelberg – New York 1981
[2] Birkhoff G.: Lattice theory. Amer. Math. Soc. Colloq. Publ. 25 (1967) | MR | Zbl
[3] Chovanec F.: States and observables on MV-algebras. Tatra Mountains Math. Publ. 3 (1993), 55–65 | MR | Zbl
[4] Nola A. Di, Georgescu G., Iorgulescu A.: Pseudo-BL-algebras, I, II. Multi. Val. Logic, to appear
[5] Dvurečenskij A.: Pseudo MV-algebras are intervals in $\ell $-groups. J. Austral. Math. Soc. 72 (2002), to appear | DOI | MR | Zbl
[6] Dvurečenskij A.: States on pseudo MV-algebras. Studia Logica 68 (2001), 301–327 | DOI | MR | Zbl
[7] Dvurečenskij A.: States and idempotents of pseudo MV-algebras. Tatra Mountains. Math. Publ. 22 (2001), 79–89 | MR | Zbl
[8] Dvurečenskij A., Kalmbach G.: States on pseudo MV-algebras and the hull-kernel topology. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 131–146 | MR | Zbl
[9] Dvurečenskij A., Vetterlein T.: Pseudoeffect algebras. I. Basic properties. Internat. J. Theoret. Phys. 40 (2001), 685–701 | DOI | MR | Zbl
[10] Dvurečenskij A., Vetterlein T.: Pseudoeffect algebras. II. Group representations. Interat. J. Theoret. Phys. 40 (2001), 703–726 | DOI | MR | Zbl
[11] Dvurečenskij A., Vetterlein T.: Congruences and states on pseudo-effect algebras. Found. Phys. Lett. 14 (2001), 425–446 | DOI | MR
[12] Fuchs L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford – London – New York – Paris 1963 | MR | Zbl
[13] Georgescu G.: Bosbach states on pseudo-BL algebras. Soft Computing, to appear
[14] Georgescu G., Iorgulescu A.: Pseudo-MV algebras. Multi Valued Logic 6 (2001), 95–135 | MR | Zbl
[15] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation. (Math. Surveys Monographs 20), Amer. Math. Soc., Providence, Rhode Island 1986 | MR | Zbl
[16] Mundici D.: Averaging the truth-value in Łukasiewicz logic. Studia Logica 55 (1995), 113–127 | DOI | MR | Zbl
[17] Rachůnek J.: A non-commutative generalization of MV-algebras. Czechoslovak Math. J. 52 (2002), 255–273 | DOI | Zbl