Convergence theorems for measures with values in Riesz spaces
Kybernetika, Tome 38 (2002) no. 3, pp. 287-295 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In some recent papers, results of uniform additivity have been obtained for convergent sequences of measures with values in $l$-groups. Here a survey of these results and some of their applications are presented, together with a convergence theorem involving Lebesgue decompositions.
In some recent papers, results of uniform additivity have been obtained for convergent sequences of measures with values in $l$-groups. Here a survey of these results and some of their applications are presented, together with a convergence theorem involving Lebesgue decompositions.
Classification : 28B15, 46G10
Keywords: convergence theorem; Riesz space; Lebesgue decomposition
@article{KYB_2002_38_3_a5,
     author = {Candeloro, Domenico},
     title = {Convergence theorems for measures with values in {Riesz} spaces},
     journal = {Kybernetika},
     pages = {287--295},
     year = {2002},
     volume = {38},
     number = {3},
     mrnumber = {1944310},
     zbl = {1265.46069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a5/}
}
TY  - JOUR
AU  - Candeloro, Domenico
TI  - Convergence theorems for measures with values in Riesz spaces
JO  - Kybernetika
PY  - 2002
SP  - 287
EP  - 295
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a5/
LA  - en
ID  - KYB_2002_38_3_a5
ER  - 
%0 Journal Article
%A Candeloro, Domenico
%T Convergence theorems for measures with values in Riesz spaces
%J Kybernetika
%D 2002
%P 287-295
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a5/
%G en
%F KYB_2002_38_3_a5
Candeloro, Domenico. Convergence theorems for measures with values in Riesz spaces. Kybernetika, Tome 38 (2002) no. 3, pp. 287-295. http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a5/

[1] Boccuto A.: Vitali–Hahn–Saks and Nikodým theorems for means with values in Riesz spaces. Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 157–173 | MR | Zbl

[2] Boccuto A.: Dieudonné-type theorems for means with values in Riesz spaces. Tatra Mountains Math. Publ. 8 (1996), 29–42 | MR | Zbl

[3] Boccuto A., Candeloro D.: Uniform $s$-boundedness and convergence results for measures with values in complete l-groups. J. Math. Anal. Appl. 265 (2002), 170–194 | DOI | MR | Zbl

[4] Boccuto A., Candeloro D.: Vitali and Schur-type theorems for Riesz-space-valued set functions. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 85–103 | MR | Zbl

[5] Boccuto A., Candeloro D.: Dieudonné-type theorems for set functions with values in $(l)$-groups. Real Anal. Exchange, to appear | MR | Zbl

[6] Brooks J. K.: On the Vitali-Hahn-Saks and Nikodým theorems. Proc. Nat. Acad. Sci. U. S. A. 64 (1969), 468–471 | DOI | MR | Zbl

[7] Brooks J. K.: Equicontinuous sets of measures and applications to Vitali’s integral convergence theorem and control measures. Adv. in Math. 10 (1973), 165–171 | DOI | MR | Zbl

[8] Brooks J. K.: On a theorem of Dieudonné. Adv. in Math. 36 (1980), 165–168 | DOI | MR | Zbl

[9] Candeloro D., Letta G.: Sui teoremi di Vitali–Hahn–Saks e di Dieudonné. Rend. Accad. Naz. Sci. XL 9 (1985), 203–213 | MR

[10] Inglesias M. Congost: Medidas y probabilidades en estructuras ordenadas. Stochastica 5 (1981), 45–48 | MR

[11] Dieudonné J.: Sur la convergence des suites de mesures de Radon. An. Acad. Brasil. Cienc. 23 (1951), 21–38; 277–282 | MR | Zbl

[12] Nikodým O.: Sur les suites convergentes de fonctions parfaitement additives d’ensemble abstrait. Monatsc. Math. 40 (1933), 427–432 | DOI | MR | Zbl

[13] Luxemburg W. A. J., Zaanen A. C.: Riesz Spaces, I. North–Holland, Amsterdam 1971

[14] Riečan B., Neubrunn T.: Integral, Measure and Ordering. Kluwer Academic Publishers / Ister Science, Bratislava 1997 | MR | Zbl

[15] Schmidt K.: Decompositions of vector measures in Riesz spaces and Banach lattices. Proc. Edinburgh Math. Soc. 29 (1986), 23–39 | MR | Zbl