Möbius fitting aggregation operators
Kybernetika, Tome 38 (2002) no. 3, pp. 259-273 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Standard Möbius transform evaluation formula for the Choquet integral is associated with the $\mathbf{min}$-aggregation. However, several other aggregation operators replacing $\mathbf{min}$ operator can be applied, which leads to a new construction method for aggregation operators. All binary operators applicable in this approach are characterized by the 1-Lipschitz property. Among ternary aggregation operators all 3-copulas are shown to be fitting and moreover, all fitting weighted means are characterized. This new method allows to construct aggregation operators from simpler ones.
Standard Möbius transform evaluation formula for the Choquet integral is associated with the $\mathbf{min}$-aggregation. However, several other aggregation operators replacing $\mathbf{min}$ operator can be applied, which leads to a new construction method for aggregation operators. All binary operators applicable in this approach are characterized by the 1-Lipschitz property. Among ternary aggregation operators all 3-copulas are shown to be fitting and moreover, all fitting weighted means are characterized. This new method allows to construct aggregation operators from simpler ones.
Classification : 03E72, 28A25, 28E10
Keywords: aggregation operator; Choquet integral
@article{KYB_2002_38_3_a3,
     author = {Koles\'arov\'a, Anna},
     title = {M\"obius fitting aggregation operators},
     journal = {Kybernetika},
     pages = {259--273},
     year = {2002},
     volume = {38},
     number = {3},
     mrnumber = {1944308},
     zbl = {1265.28042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a3/}
}
TY  - JOUR
AU  - Kolesárová, Anna
TI  - Möbius fitting aggregation operators
JO  - Kybernetika
PY  - 2002
SP  - 259
EP  - 273
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a3/
LA  - en
ID  - KYB_2002_38_3_a3
ER  - 
%0 Journal Article
%A Kolesárová, Anna
%T Möbius fitting aggregation operators
%J Kybernetika
%D 2002
%P 259-273
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a3/
%G en
%F KYB_2002_38_3_a3
Kolesárová, Anna. Möbius fitting aggregation operators. Kybernetika, Tome 38 (2002) no. 3, pp. 259-273. http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a3/

[1] Calvo T., DeBaets, B., Fodor J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001), 15–24 | MR

[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: A review of aggregation operators. In: Internat. Summer School on Aggregation operators and Their Applications, AGOP’2001, Oviedo 2001 | MR

[3] Calvo T., Mesiar R.: Stability of aggregation operators. In: Proc. EUSFLAT’2001, Leicester 2001 | MR

[4] Chateauneuf A., Jaffray J. Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Math. Social Sci. 17 (1989), 263–283 | DOI | MR | Zbl

[5] Choquet G.: Theory of capacities. Ann. Inst. Fourier 5 (1953 –1954), 131–295 | DOI | MR

[6] Frank M.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl

[7] Grabisch M., Labreuche, Ch.: The Šipoš integral for the aggregation of interacting bipolar criteria. In: Proc. IPMU’2000, vol. I, Madrid, pp. 395–401

[8] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood Cliffs, N.J. 1988 | MR | Zbl

[9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 | MR | Zbl

[10] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators. In: Proc. AGOP’2001, Oviedo 2001, pp. 71–76

[11] Mesiar R.: A note to the Choquet integral. Tatra Mountains Math. Publ. 12 (1997), 241–245 | MR | Zbl

[12] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, Berlin 1999 | DOI | MR | Zbl

[13] Pap E.: Null–additive Set Functions. Kluwer, Dordrecht 1995 | MR | Zbl

[14] Radojević D.: Logical measure of continual logical functions. In: Proc. IPMU’2000, vol. I, Madrid 2000, pp. 574–581

[15] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 | MR | Zbl