Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces
Kybernetika, Tome 38 (2002) no. 3, pp. 363-382 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47H10, 47H40, 47S50, 54E70, 54H25, 60H25
Keywords: probabilistic metric space; triangular norm; Menger space; fixed point theorem
@article{KYB_2002_38_3_a11,
     author = {Had\v{z}i\'c, Olga and Pap, Endre and Budin\v{c}evi\'c, Mirko},
     title = {Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces},
     journal = {Kybernetika},
     pages = {363--382},
     year = {2002},
     volume = {38},
     number = {3},
     mrnumber = {1944316},
     zbl = {1265.54127},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a11/}
}
TY  - JOUR
AU  - Hadžić, Olga
AU  - Pap, Endre
AU  - Budinčević, Mirko
TI  - Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces
JO  - Kybernetika
PY  - 2002
SP  - 363
EP  - 382
VL  - 38
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a11/
LA  - en
ID  - KYB_2002_38_3_a11
ER  - 
%0 Journal Article
%A Hadžić, Olga
%A Pap, Endre
%A Budinčević, Mirko
%T Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces
%J Kybernetika
%D 2002
%P 363-382
%V 38
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a11/
%G en
%F KYB_2002_38_3_a11
Hadžić, Olga; Pap, Endre; Budinčević, Mirko. Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces. Kybernetika, Tome 38 (2002) no. 3, pp. 363-382. http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a11/

[1] J. Aczel: Lectures on Functional Equations and their Applications. Academic Press, New York 1969. | MR

[2] O. Hadžič, E. Pap: On some classes of t-norms important in the fixed point theory. Bull. Acad. Serbe Sci. Art. Sci. Math. 25 (2000), 15-28. | MR

[3] O. Hadžič, E. Pap: A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces. Fuzzy Sets and Systems 127 (2002), 333-344. | MR

[4] O. Hadžič, E. Pap: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Dordrecht 2001. | MR

[5] T. L. Hicks: Fixed point theory in probabilistic metric spaces. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72. | MR | Zbl

[6] O. Kaleva, S. Seikalla: On fuzzy metric spaces. Fuzzy Sets and Systems 12 (1984), 215-229. | DOI | MR

[7] E. P. Klement R. Mesiar, and E. Pap: Triangular Norms. (Trends in Logic 8.) Kluwer Academic Publishers, Dordrecht 2000. | MR

[8] E. P. Klement R. Mesiar, and E. Pap: Uniform approximation of associative copulas by strict and non-strict copulas. Illinois J. Math. J. 5 (2001), 4, 1393-1400. | MR

[9] K. Menger: Statistical metric. Proc Nat. Acad. Sci. U.S.A. 28 (1942), 535-537. | DOI | MR

[10] R. Mesiar, H. Thiele: On $T$-quantifiers and $S$-quantifiers: Discovering the World with Fuzzy Logic. (V. Novak and I. Perfilieva, eds., Studies in Fuzziness and Soft Computing vol. 57), Physica-Verlag, Heidelberg 2000, pp. 310-326. | MR

[11] E. Pap: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1995. | MR | Zbl

[12] E. Pap O. Hadžič, and R. Mesiar: A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory. J. Math. Anal. Appl. 202 (1996), 433-449. | DOI | MR

[13] V. Radu: Lectures on probabilistic analysis. Surveys. (Lectures Notes and Monographs Series on Probability, Statistics & Applied Mathematics 2), Universitatea de Vest din Timisoara 1994.

[14] B. Schweizer, A. Sklar: Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983. | MR | Zbl

[15] V. M. Sehgal, A. T. Bharucha-Reid: Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory 6 (1972), 97-102. | DOI | MR | Zbl

[16] R. M. Tardiff: Contraction maps on probabilistic metric spaces. J. Math. Anal. Appl. 165 (1992), 517-523. | DOI | MR | Zbl

[17] S. Weber: $\bot$-decomposable measures and integrals for Archimedean t-conorm $\bot$. J. Math. Anal. Appl. 101 (1984), 114-138. | DOI | MR