Keywords: probabilistic metric space; triangular norm; Menger space; fixed point theorem
@article{KYB_2002_38_3_a11,
author = {Had\v{z}i\'c, Olga and Pap, Endre and Budin\v{c}evi\'c, Mirko},
title = {Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces},
journal = {Kybernetika},
pages = {363--382},
year = {2002},
volume = {38},
number = {3},
mrnumber = {1944316},
zbl = {1265.54127},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a11/}
}
TY - JOUR AU - Hadžić, Olga AU - Pap, Endre AU - Budinčević, Mirko TI - Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces JO - Kybernetika PY - 2002 SP - 363 EP - 382 VL - 38 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a11/ LA - en ID - KYB_2002_38_3_a11 ER -
%0 Journal Article %A Hadžić, Olga %A Pap, Endre %A Budinčević, Mirko %T Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces %J Kybernetika %D 2002 %P 363-382 %V 38 %N 3 %U http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a11/ %G en %F KYB_2002_38_3_a11
Hadžić, Olga; Pap, Endre; Budinčević, Mirko. Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces. Kybernetika, Tome 38 (2002) no. 3, pp. 363-382. http://geodesic.mathdoc.fr/item/KYB_2002_38_3_a11/
[1] J. Aczel: Lectures on Functional Equations and their Applications. Academic Press, New York 1969. | MR
[2] O. Hadžič, E. Pap: On some classes of t-norms important in the fixed point theory. Bull. Acad. Serbe Sci. Art. Sci. Math. 25 (2000), 15-28. | MR
[3] O. Hadžič, E. Pap: A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces. Fuzzy Sets and Systems 127 (2002), 333-344. | MR
[4] O. Hadžič, E. Pap: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Dordrecht 2001. | MR
[5] T. L. Hicks: Fixed point theory in probabilistic metric spaces. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72. | MR | Zbl
[6] O. Kaleva, S. Seikalla: On fuzzy metric spaces. Fuzzy Sets and Systems 12 (1984), 215-229. | DOI | MR
[7] E. P. Klement R. Mesiar, and E. Pap: Triangular Norms. (Trends in Logic 8.) Kluwer Academic Publishers, Dordrecht 2000. | MR
[8] E. P. Klement R. Mesiar, and E. Pap: Uniform approximation of associative copulas by strict and non-strict copulas. Illinois J. Math. J. 5 (2001), 4, 1393-1400. | MR
[9] K. Menger: Statistical metric. Proc Nat. Acad. Sci. U.S.A. 28 (1942), 535-537. | DOI | MR
[10] R. Mesiar, H. Thiele: On $T$-quantifiers and $S$-quantifiers: Discovering the World with Fuzzy Logic. (V. Novak and I. Perfilieva, eds., Studies in Fuzziness and Soft Computing vol. 57), Physica-Verlag, Heidelberg 2000, pp. 310-326. | MR
[11] E. Pap: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1995. | MR | Zbl
[12] E. Pap O. Hadžič, and R. Mesiar: A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory. J. Math. Anal. Appl. 202 (1996), 433-449. | DOI | MR
[13] V. Radu: Lectures on probabilistic analysis. Surveys. (Lectures Notes and Monographs Series on Probability, Statistics & Applied Mathematics 2), Universitatea de Vest din Timisoara 1994.
[14] B. Schweizer, A. Sklar: Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983. | MR | Zbl
[15] V. M. Sehgal, A. T. Bharucha-Reid: Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory 6 (1972), 97-102. | DOI | MR | Zbl
[16] R. M. Tardiff: Contraction maps on probabilistic metric spaces. J. Math. Anal. Appl. 165 (1992), 517-523. | DOI | MR | Zbl
[17] S. Weber: $\bot$-decomposable measures and integrals for Archimedean t-conorm $\bot$. J. Math. Anal. Appl. 101 (1984), 114-138. | DOI | MR