Rotary inverted pendulum: trajectory tracking via nonlinear control techniques
Kybernetika, Tome 38 (2002) no. 2, pp. 217-232 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The nonlinear control techniques are applied to the model of rotary inverted pendulum. The model has two degrees of freedom and is not exactly linearizable. The goal is to control output trajectory of the rotary inverted pendulum asymptotically along a desired reference. Moreover, the designed controller should be robust with respect to specified perturbations and parameters uncertainties. A combination of techniques based on nonlinear normal forms, output regulation and sliding mode approach is used here. As a specific feature, the approximate solution of the so-called regulator equation is used. The reason is that its exact analytic solution can not be, in general, expressed in the closed form. Though the approximate solution does not give asymptotically decaying tracking error, it provides reasonable bounded error. The performance of the designed feedback regulator is successfully tested via computer simulations.
The nonlinear control techniques are applied to the model of rotary inverted pendulum. The model has two degrees of freedom and is not exactly linearizable. The goal is to control output trajectory of the rotary inverted pendulum asymptotically along a desired reference. Moreover, the designed controller should be robust with respect to specified perturbations and parameters uncertainties. A combination of techniques based on nonlinear normal forms, output regulation and sliding mode approach is used here. As a specific feature, the approximate solution of the so-called regulator equation is used. The reason is that its exact analytic solution can not be, in general, expressed in the closed form. Though the approximate solution does not give asymptotically decaying tracking error, it provides reasonable bounded error. The performance of the designed feedback regulator is successfully tested via computer simulations.
Classification : 70Q05, 93B35, 93C10, 93D15
Keywords: rotary inverted pendulum; nonlinear control; trajectory tracking
@article{KYB_2002_38_2_a6,
     author = {Ramos-Velasco, Luis E. and Ruiz-Le\'on, Jos\'e J. and \v{C}elikovsk\'y, Sergej},
     title = {Rotary inverted pendulum: trajectory tracking via nonlinear control techniques},
     journal = {Kybernetika},
     pages = {217--232},
     year = {2002},
     volume = {38},
     number = {2},
     mrnumber = {1916453},
     zbl = {1265.93138},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a6/}
}
TY  - JOUR
AU  - Ramos-Velasco, Luis E.
AU  - Ruiz-León, José J.
AU  - Čelikovský, Sergej
TI  - Rotary inverted pendulum: trajectory tracking via nonlinear control techniques
JO  - Kybernetika
PY  - 2002
SP  - 217
EP  - 232
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a6/
LA  - en
ID  - KYB_2002_38_2_a6
ER  - 
%0 Journal Article
%A Ramos-Velasco, Luis E.
%A Ruiz-León, José J.
%A Čelikovský, Sergej
%T Rotary inverted pendulum: trajectory tracking via nonlinear control techniques
%J Kybernetika
%D 2002
%P 217-232
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a6/
%G en
%F KYB_2002_38_2_a6
Ramos-Velasco, Luis E.; Ruiz-León, José J.; Čelikovský, Sergej. Rotary inverted pendulum: trajectory tracking via nonlinear control techniques. Kybernetika, Tome 38 (2002) no. 2, pp. 217-232. http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a6/

[1] Castillo B., Castro–Linares: On robust regulation via sliding mode for nonlinear system. Systems Control Lett. 24 (1995), 361–371 | DOI | MR

[2] Čelikovský S., Huang, Jie: Continuous feedback asymptotic output regulation for a class of nonlinear systems having nonstabilizable linearization. In: Proc. 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 3087–3092

[3] Priscoli F. Delli, Isidori A.: Robust tracking for a class on nonlinear systems. In: 1st European Control Conference, Grenoble 1991, pp. 1814–1818

[4] Huang J., Rugh W. J.: On a nonlinear multivariable servomechanism problem. Automatica 26 (1990), 963–972 | DOI | MR | Zbl

[5] Huang J., Rugh W. J.: An approximation method for the nonlinear servomechanism problem. IEEE Trans. Automat. Control 37 (1992), 1395–1398 | DOI | MR | Zbl

[6] Isidori A., Byrnes C. I.: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131–140 | DOI | MR | Zbl

[7] Krener A. J.: The construction of optimal linear and nonlinear regulators. In: Systems, Models and Feedback (A. Isidori and T. J. Tarn, eds.), Birkhäuser, Basel 1992, pp. 301–322 | MR | Zbl

[8] Kwatny H. G., Kim H.: Variable structure regulation of partially linearizable dynamics. Systems Control Lett. 10 (1990), 67–80 | DOI | MR | Zbl

[9] Sira–Ramírez H.: A dynamical variable structure control strategy in asymptotic output tracking problems. IEEE Trans. Automat. Control 38 (1993), 615–620 | DOI | MR | Zbl

[10] Slotine J. J., Hedrick K.: Robust input-output feedback linearization. Internat. J. Control 57 (1993), 1133–1139 | DOI | MR | Zbl

[11] Spong M. W., Vidyasagar M.: Robot Dynamics and Control. Wiley, New York 1989

[12] Utkin V. I.: Sliding Modes in Control and Optimization. Springer–Verlag, Berlin 1992 | MR | Zbl