Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems
Kybernetika, Tome 38 (2002) no. 2, pp. 209-216 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A necessary and sufficient condition for the existence of pole and zero structures in a proper rational matrix equation $T_{2} X = T_{1}$ is developed. This condition provides a new interpretation of sufficient conditions which ensure decentralized stabilizability of an expanded system. A numerical example illustrate the theoretical results.
A necessary and sufficient condition for the existence of pole and zero structures in a proper rational matrix equation $T_{2} X = T_{1}$ is developed. This condition provides a new interpretation of sufficient conditions which ensure decentralized stabilizability of an expanded system. A numerical example illustrate the theoretical results.
Classification : 93A14, 93B55, 93B60, 93D15
Keywords: pole-zero structure; decentralized stabilizability; expanded system; rational matrix equation
@article{KYB_2002_38_2_a5,
     author = {Baksi, Dibyendu and Datta, Kanti B. and Ray, Goshaidas},
     title = {Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems},
     journal = {Kybernetika},
     pages = {209--216},
     year = {2002},
     volume = {38},
     number = {2},
     mrnumber = {1916452},
     zbl = {1265.93003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a5/}
}
TY  - JOUR
AU  - Baksi, Dibyendu
AU  - Datta, Kanti B.
AU  - Ray, Goshaidas
TI  - Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems
JO  - Kybernetika
PY  - 2002
SP  - 209
EP  - 216
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a5/
LA  - en
ID  - KYB_2002_38_2_a5
ER  - 
%0 Journal Article
%A Baksi, Dibyendu
%A Datta, Kanti B.
%A Ray, Goshaidas
%T Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems
%J Kybernetika
%D 2002
%P 209-216
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a5/
%G en
%F KYB_2002_38_2_a5
Baksi, Dibyendu; Datta, Kanti B.; Ray, Goshaidas. Existence of pole-zero structures in a rational matrix equation arising in a decentralized stabilization of expanding systems. Kybernetika, Tome 38 (2002) no. 2, pp. 209-216. http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a5/

[1] Davison E. J., Chang T. N.: Decentralized controller design using parameter optimization methods. Control Theory and Advanced Technology 2 (1986), 131–154

[2] Emani-Naeini A., Dooren P. Van: Computation of zeros of linear multivariable systems. Automatica 18 (1982), 415–430 | DOI | MR

[3] Ikeda M.: Decentralized control of large scale systems. In: Three Decades of Mathematical System Theory (H. Nijmeijer and J. M Schumacher, eds., Lecture Notes in Control and Information Sciences 135), Springer–Verlag, Berlin – Heidelberg – New York 1989 | MR | Zbl

[4] Kailath T.: Linear Systems. Prentice–Hall, Englewood Cliffs, N.J. 1980 | MR | Zbl

[5] Siljak D. D.: Large-Scale Dynamic Systems: Stability and Structure. North–Holland, New York 1978 | MR | Zbl

[6] Tan X. L., Ikeda M.: Decentralized stabilization for expanding construction of large scale systems. IEEE Trans. Automat. Control 35 (1990), 644–651 | DOI | MR | Zbl

[7] Unyelioglu K. A., Ozguler A. B.: Decentralized stabilization of multivariable systems using stable proper fractional approach. Communication, Control and Signal Processing (1990), 843–849

[8] Vardulakis A. I. G., Karcanias N.: On the stable exact model matching problem. Systems Control Lett. 5 (1985), 237–242 | DOI | MR | Zbl

[9] Vidyasagar M.: Control Systems Synthesis: A Factorization Approach. M.I.T. Press, Cambridge, MA 1985 | MR