Optimal decentralized control design with disturbance decoupling
Kybernetika, Tome 38 (2002) no. 2, pp. 197-208 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we present an input-output point of view for the problem of closed loop norm minimization of stable plants when a decentralized structure and a disturbance decoupling property are imposed on the controller. We show that this problem is convex and present approaches to its solution in the optimal $\ell _1$ sense in the nontrivial case which is when the block off- diagonal terms of the plant have more columns than rows.
In this paper we present an input-output point of view for the problem of closed loop norm minimization of stable plants when a decentralized structure and a disturbance decoupling property are imposed on the controller. We show that this problem is convex and present approaches to its solution in the optimal $\ell _1$ sense in the nontrivial case which is when the block off- diagonal terms of the plant have more columns than rows.
Classification : 90C90, 93A14, 93B51, 93C73
Keywords: disturbance decoupling; optimal performance; $\ell _1$ optimal control
@article{KYB_2002_38_2_a4,
     author = {Voulgaris, Petros G.},
     title = {Optimal decentralized control design with disturbance decoupling},
     journal = {Kybernetika},
     pages = {197--208},
     year = {2002},
     volume = {38},
     number = {2},
     mrnumber = {1916451},
     zbl = {1265.93110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a4/}
}
TY  - JOUR
AU  - Voulgaris, Petros G.
TI  - Optimal decentralized control design with disturbance decoupling
JO  - Kybernetika
PY  - 2002
SP  - 197
EP  - 208
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a4/
LA  - en
ID  - KYB_2002_38_2_a4
ER  - 
%0 Journal Article
%A Voulgaris, Petros G.
%T Optimal decentralized control design with disturbance decoupling
%J Kybernetika
%D 2002
%P 197-208
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a4/
%G en
%F KYB_2002_38_2_a4
Voulgaris, Petros G. Optimal decentralized control design with disturbance decoupling. Kybernetika, Tome 38 (2002) no. 2, pp. 197-208. http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a4/

[1] Boyd S. P., Barratt C. H.: Linear Controller Design: Limits of Performance. Prentice Hall, Englewood Cliffs, N. J. 1991 | Zbl

[2] Conway J. B.: A Course in Functional Analysis. Springer–Verlag, New York 1990 | MR | Zbl

[3] Cuhna N. O. Da, Polak E.: Constrained minimization under vector valued criteria in finite dimensional spaces. J. Math. Anal. Appl. 19 (1967), 103–124 | DOI | MR

[4] Francis B. A.: A Course in ${H}_\infty $ Control Theory. (Lecture Notes in Control and Information Sciences 88.) Springer–Verlag, New York 1987 | MR

[5] Dahleh M. A., Diaz-Bobillo I. J.: Control of Uncertain Systems: A Linear Programming Approach. Prentice Hall, Englewood Cliffs, N. J. 1995 | Zbl

[6] Gundes A. N., Desoer C. A.: Algebraic Theory of Linear Feedback Systems with Full and Decentralized Compensators. Springer–Verlag, Heidelberg 1990 | MR

[7] Goodwin G. C., Seron M. M., Salgado M. E.: ${\mathcal {H}}_2$ design of decentralized controllers. In: Proc. American Control Conference, San Diego 1999

[8] Khammash M.: Solution of the $\ell _1$ optimal control problem without zero interpolation. In: Proc. Control Decision Conference, Kobe 1996; IEEE Trans. Automat. Control, to appear

[9] Kučera V.: Discrete Linear Control. Wiley, Chichester 1979 | MR | Zbl

[10] Linnemann A., Wang Q.: Block decoupling with stability by unity output feedback-solution and performance limitations. Automatica 29 (1993), 735–744 | DOI | MR | Zbl

[11] Salapaka M. V., Khammash M., Dahleh M.: Solution of MIMO ${\mathcal {H}}_2/\ell _1$ problem without zero interpolation. In: Proc. Control Decision Conference, San Diego 1997

[12] Ünyelioģlu K. A., Özgüner U.: ${\mathcal {H}}_\infty $ sensitivity minimization using decentralized feedback: 2-input 2-output systems. Systems Control Lett. (1994), 99–109 | MR

[13] Qi X., Khammash M. H., Salapaka M. V.: Optimal controller synthesis with multiple objectives. In: Proc. 2001 American Control Conference, Arlington 2001, pp. 2730–2735

[14] Qi X., Khammash M. H., Salapaka M. V.: A Matlab package for multiobjective control synthesis. In: IEEE Conference on Decision and Control 2001, to appear

[15] Quek C. K., Loh A. P.: Robust decoupling of discrete systems using $\ell _1$ optimization. IEEE Trans. Automat. Control 42 (1997), 549–553 | DOI | MR

[16] Woude J. W. van der: Almost noninteracting control by measurement feedback. Systems Control Lett. 9 (1987), 7–16 | DOI | MR

[17] Youla D. C., Jabr H. A., Bongiorno J. J.: Modern Wiener-Hopf design of optimal controllers. Part 2: The multivariable case. IEEE Trans. Automat. Control AC-21 (1976), 319–338 | DOI | MR | Zbl