Receding-horizon control of constrained uncertain linear systems with disturbances
Kybernetika, Tome 38 (2002) no. 2, pp. 169-185 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest invariant region are investigated.
The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest invariant region are investigated.
Classification : 93B50, 93B51, 93C05, 93C55, 93D21
Keywords: constrained linear system; disturbances; discrete-time control system
@article{KYB_2002_38_2_a2,
     author = {Chisci, Luigi and Falugi, Paola and Zappa, Giovanni},
     title = {Receding-horizon control of constrained uncertain linear systems with disturbances},
     journal = {Kybernetika},
     pages = {169--185},
     year = {2002},
     volume = {38},
     number = {2},
     mrnumber = {1916449},
     zbl = {1265.93107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a2/}
}
TY  - JOUR
AU  - Chisci, Luigi
AU  - Falugi, Paola
AU  - Zappa, Giovanni
TI  - Receding-horizon control of constrained uncertain linear systems with disturbances
JO  - Kybernetika
PY  - 2002
SP  - 169
EP  - 185
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a2/
LA  - en
ID  - KYB_2002_38_2_a2
ER  - 
%0 Journal Article
%A Chisci, Luigi
%A Falugi, Paola
%A Zappa, Giovanni
%T Receding-horizon control of constrained uncertain linear systems with disturbances
%J Kybernetika
%D 2002
%P 169-185
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a2/
%G en
%F KYB_2002_38_2_a2
Chisci, Luigi; Falugi, Paola; Zappa, Giovanni. Receding-horizon control of constrained uncertain linear systems with disturbances. Kybernetika, Tome 38 (2002) no. 2, pp. 169-185. http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a2/

[1] Badgwell T. A.: Robust model predictive control. Internat. J. Control 68 (1997), 797–818 | DOI | MR | Zbl

[2] Barmisch R. R.: Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. J. Optim. Theory Appl. 46 (1985), 399–408 | DOI | MR

[3] Bemporad A., Morari M.: Robust model predictive control: a survey. In: Robustness in Identification and Control (A. Garulli, A. Tesi and A. Vicino, eds., Lecture Notes in Control and Information Sciences 245), Springer–Verlag, Berlin 1999, pp. 207–226 | MR | Zbl

[4] Blanchini F.: Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov function. IEEE Trans. Automat. Control 39 (1994), 428–433 | DOI | MR

[5] Blanchini F.: Set invariance in control. Automatica 35 (1999), 1747–1768 | DOI | MR | Zbl

[6] Casavola A., Giannelli, M., Mosca E.: Min-max predictive control strategies for input-saturated polytopic uncertain systems. Automatica 36 (2000), 125–133 | DOI | MR | Zbl

[7] Chisci L., Zappa G.: Robustifying a predictive controller against persistent disturbances. In: Proc. European Control Conference’99 (CD ROM), Karlsruhe 1999

[8] Geromel J. C., Peres P. L. D., Bernussou J.: On a convex parameter space method for linear control design of uncertain systems. SIAM J. Control Optim. 29 (1991), 381–402 | DOI | MR | Zbl

[9] Gilbert E. G., Tan K. Tin: Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. Automat. Control 36 (1991), 1008–1021 | DOI | MR

[10] Gurvits L.: Stability of discrete linear inclusion. Linear Algebra Appl. 231 (1995), 47–85 | DOI | MR | Zbl

[11] Keerthi S. S., Gilbert E. G.: Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints. IEEE Trans. Automat. Control 32 (1987), 432–435 | DOI | Zbl

[12] Keerthi S. S., Gilbert E. G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57 (1988), 265–293 | DOI | MR | Zbl

[13] Kolmanovsky I., Gilbert E. G.: Maximal output admissible sets for discrete-time systems with disturbance inputs. In: Proc. 1995 Amer. Control Conference, Seattle 1995, pp. 1995–1999

[14] Kothare M. V., Balakrishnan, V., Morari M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32 (1996), 1361–1379 | DOI | MR | Zbl

[15] Kouvaritakis B., Rossiter J. A., Schuurmans J.: Efficient robust predictive control. IEEE Trans. Automat. Control 4 (2000), 1545–1549 | DOI | MR | Zbl

[16] Lee J. H., Yu Z.: Worst case formulations of model predictive control for systems with bounded parameters. Automatica 33 (1997), 763–781 | DOI | MR | Zbl

[17] Rao C., Rawlings J. B., Wright S.: Application of interior point methods to model predictive control. J. Optim. Theory Appl. 99 (1998), 723–757 | DOI | MR | Zbl

[18] Rossiter J. A., Kouvaritakis, B., Rice M. J.: A numerically robust state-space approach to stable predictive control strategies. Automatica 34 (1998), 65–73 | DOI | MR | Zbl