Statistical inference for fault detection: a complete algorithm based on kernel estimators
Kybernetika, Tome 38 (2002) no. 2, pp. 141-168 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This article presents a new concept for a statistical fault detection system, including the detection, diagnosis, and prediction of faults. Theoretical material has been collected to provide a complete algorithm making possible the design of a usable system for statistical inference on the basis of the current value of a symptom vector. The use of elements of artificial intelligence enables self-correction and adaptation to changing conditions. The mathematical apparatus is founded on the methodology of testing statistical hypotheses, and on kernel estimators; the theoretical aspects have been documented by mathematical theorems. The work is oriented towards the problem of fault detection in dynamic systems under automatic control, but the basic formula is of a universal nature and can be used in a broad range of applications, including those outside the scope of engineering.
This article presents a new concept for a statistical fault detection system, including the detection, diagnosis, and prediction of faults. Theoretical material has been collected to provide a complete algorithm making possible the design of a usable system for statistical inference on the basis of the current value of a symptom vector. The use of elements of artificial intelligence enables self-correction and adaptation to changing conditions. The mathematical apparatus is founded on the methodology of testing statistical hypotheses, and on kernel estimators; the theoretical aspects have been documented by mathematical theorems. The work is oriented towards the problem of fault detection in dynamic systems under automatic control, but the basic formula is of a universal nature and can be used in a broad range of applications, including those outside the scope of engineering.
Classification : 62G05, 62G07, 62N05, 93E10
Keywords: fault detection; kernel estimator; trend estimation
@article{KYB_2002_38_2_a1,
     author = {Kulczycki, Piotr},
     title = {Statistical inference for fault detection: a complete algorithm based on kernel estimators},
     journal = {Kybernetika},
     pages = {141--168},
     year = {2002},
     volume = {38},
     number = {2},
     mrnumber = {1916448},
     zbl = {1265.93226},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a1/}
}
TY  - JOUR
AU  - Kulczycki, Piotr
TI  - Statistical inference for fault detection: a complete algorithm based on kernel estimators
JO  - Kybernetika
PY  - 2002
SP  - 141
EP  - 168
VL  - 38
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a1/
LA  - en
ID  - KYB_2002_38_2_a1
ER  - 
%0 Journal Article
%A Kulczycki, Piotr
%T Statistical inference for fault detection: a complete algorithm based on kernel estimators
%J Kybernetika
%D 2002
%P 141-168
%V 38
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a1/
%G en
%F KYB_2002_38_2_a1
Kulczycki, Piotr. Statistical inference for fault detection: a complete algorithm based on kernel estimators. Kybernetika, Tome 38 (2002) no. 2, pp. 141-168. http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a1/

[1] Abraham B., Ledolter J.: Statistical Methods for Forecasting. Wiley, New York 1983 | MR | Zbl

[2] Basseville M., Nikiforov I. V.: Detection of Abrupt Changes – Theory and Applications. Prentice–Hall, Englewood Cliffs, N.J. 1993 | MR

[3] Berger J. O.: Statistical Decision Theory. Springer–Verlag, New York 1980 | MR | Zbl

[4] Billingsley P.: Probability and Measure. Wiley, New York 1979 | MR | Zbl

[5] Chen J., Patton R. J.: Robust Model–Based Fault Diagnosis for Dynamic Systems. Kluwer, Boston 1999 | Zbl

[6] Devroe L., Györfi L.: Nonparametric Density Estimation: the $L_1 $ View. Wiley, New York 1985 | MR

[7] Dertouzos M. L., Athans M., Spann R. N., Mason S. J.: Systems, Networks, and Computation. McGraw–Hill, New York 1972 | Zbl

[8] Fisz M.: Probability Theory and Mathematical Statistics. Wiley, New York 1963 | MR | Zbl

[9] Gertler J. J.: Fault Detection and Diagnosis in Engineering Systems. Dekker, New York 1998

[10] Kulczycki P.: Almost certain time-optimal positional control. IMA J. Math. Control Inform. 13 (1996), 63–77 | DOI | MR | Zbl

[11] Kulczycki P.: An algorithm for Bayes parameter identification. Trans. ASME: Journal of Dynamic Systems, Measurement, and Control, Special Issue on the Identification of Mechanical Systems 123 (2001), 611–614 | Zbl

[12] Kulczycki P.: A random approach to time-optimal control. Trans. ASME: Journal of Dynamic Systems, Measurement, and Control 121 (1999), 542–543

[13] Kulczycki P.: A test for comparing distribution functions with strongly unbalanced samples. Statistica, to appear | MR

[14] Kulczycki P.: Fault Detection in Automated Systems by Statistical Methods. Alfa, Warsaw 1998

[15] Kulczycki P.: Fuzzy controller for mechanical systems. IEEE Trans. on Fuzzy Systems 8 (2000), 645–652 | DOI

[16] Kulczycki P., Dawidowicz A. L.: Kernel estimator of quantile. Univ. Iagel, Acta Math. 37 (1999), 325–336 | MR | Zbl

[17] Kulczycki P., Wisniewski R.: Fuzzy controller for a system with uncertain load. Fuzzy Sets and Systems, to appear | MR | Zbl

[18] Mangoubi R. S.: Robust Estimation and Failure Detection. Springer–Verlag, London 1998

[19] Parrish R. S.: Comparison of quantile estimators in normal sampling. Biometrics 46 (1990), 247–257 | DOI | Zbl

[20] Rao B. L. S. Prakasa: Nonparametric Functional Estimation. Academic Press, Orlando 1983 | MR

[21] Schiøler H., Kulczycki P.: Neural network for estimating conditional distributions. IEEE Trans. Neural Networks 8 (1997), 1015–1025 | DOI

[22] Sheather S. J., Marron J. S.: Kernel quantile estimators. J. Amer. Statist. Assoc. 85 (1990), 410–416 | DOI | MR | Zbl

[23] Silverman B. W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London 1986 | MR | Zbl

[24] Sohlberg B.: Supervision and Control for Industrial Processes. Springer–Verlag, London 1998

[25] Wand M. P., Jones M. C.: Kernel Smoothing. Chapman and Hall, London 1994 | MR | Zbl

[26] West M., Harrison J.: Bayesian Forecasting and Dynamic Models. Springer–Verlag, New York 1989 | MR | Zbl