Keywords: polynomial equation; Sylvester matrix; dynamical system
@article{KYB_2002_38_2_a0,
author = {Henrion, Didier and Je\v{z}ek, Jan and \v{S}ebek, Michael},
title = {Discrete-time symmetric polynomial equations with complex coefficients},
journal = {Kybernetika},
pages = {113--139},
year = {2002},
volume = {38},
number = {2},
mrnumber = {1916447},
zbl = {1265.93102},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a0/}
}
Henrion, Didier; Ježek, Jan; Šebek, Michael. Discrete-time symmetric polynomial equations with complex coefficients. Kybernetika, Tome 38 (2002) no. 2, pp. 113-139. http://geodesic.mathdoc.fr/item/KYB_2002_38_2_a0/
[1] Barmish B. R.: New Tools for Robustness of Linear Systems. MacMillan, New York 1994 | Zbl
[2] Bose N. K., Shi Y. Q.: A simple general proof of Kharitonov’s generalized stability criterion. IEEE Trans. Circuits and Systems 34 (1987), 1233–1237 | DOI | MR | Zbl
[3] Golub G. H., Loan C. F. Van: Matrix Computations. Third edition. Johns Hopkins University Press, Baltimore, Maryland 1996 | MR
[4] Henrion D., Šebek M.: An efficient numerical method for the discrete-time symmetric matrix polynomial equation. IEE Proceedings, Control Theory and Applications 145 (1998), 5, 443–448
[5] Henrion D.: Reliable Algorithms for Polynomial Matrices. Ph. D. Thesis, Control Theory Department, Institute of Information Theory and Automation, Prague 1998
[6] Henrion D., Šebek M.: Symmetric matrix polynomial equation: Interpolation results. Automatica 34 (1998), 7, 811–824 | DOI | MR | Zbl
[7] Henrion D., Šebek M.: Reliable numerical methods for polynomial matrix triangularization. IEEE Trans. Automat. Control 44 (1999), 3, 497–508 | DOI | MR | Zbl
[8] Higham N. J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia 1996 | MR | Zbl
[9] Ježek J.: Conjugated and symmetric polynomial equations. Part II: Discrete-time systems. Kybernetika 19 (1983), 3, 196–211 | MR | Zbl
[10] Ježek J., Kučera V.: Efficient algorithm for matrix spectral factorization. Automatica 21 (1985), 6, 663–669 | DOI | MR
[11] Ježek J.: Symmetric matrix polynomial equations. Kybernetika 22 (1986), 1, 19–30 | MR | Zbl
[12] Ježek J., Hunt K. J.: Coupled polynomial equations of LQ control synthesis and an algorithm for solution. Internat. J. Control 58 (1993), 5, 1155–1167 | DOI | MR
[13] Kailath T.: Linear Systems. Prentice Hall, Englewood Cliffs, N.J. 1980 | MR | Zbl
[14] Kučera V.: Discrete Linear Control: The Polynomial Approach. Wiley, Chichester 1979 | MR
[15] Kučera V.: Analysis and Design of Discrete Linear Control Systems. Prentice Hall, London 1991 | MR | Zbl
[16] Lindbom L.: A Wiener Filtering Approach to the Design of Tracking Algorithms with Applications to Mobile Radio Communications. Ph. D. Thesis, Signal Processing Group, Department of Technology, Uppsala University, Sweden 1995
[17] MacChi O.: Adaptive Processing: the Least Mean Squares Approach and Applications in Transmission. Wiley, Chichester 1995
[18] Proakis J. G., Salehi M.: Communication Systems Engineering. Prentice Hall, Englewood Cliffs, N.J. 1994 | Zbl
[19] Šebek M., Kwakernaak H., Henrion, D., Pejchová S.: Recent Progress in Polynomial Methods and Polynomial Toolbox for Matlab Version 2. 0. In: Proc. Conference on Decision and Control, IEEE, Tampa 1998, pp. 3661–3668.See also the web page www.polyx.com
[20] Söderström T., Ježek, J., Kučera V.: An efficient and versatile algorithm for computing the covariance function of an ARMA process. IEEE Trans. Signal Processing 46 (1998), 6, 1591–1600 | DOI | MR | Zbl
[21] Willems J. C., Trentelman H. L.: On quadratic differential forms. SIAM J. Control Optim. 36 (1998), 5, 1703–1749 | DOI | MR | Zbl