@article{KYB_2001_37_6_a2,
author = {Hu\v{s}kov\'a, Marie},
title = {Some invariant test procedures for detection of structural changes; behavior under alternatives},
journal = {Kybernetika},
pages = {669--684},
year = {2001},
volume = {37},
number = {6},
mrnumber = {1936994},
zbl = {1264.62012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_6_a2/}
}
Hušková, Marie. Some invariant test procedures for detection of structural changes; behavior under alternatives. Kybernetika, Tome 37 (2001) no. 6, pp. 669-684. http://geodesic.mathdoc.fr/item/KYB_2001_37_6_a2/
[1] Billingsley P.: Convergence of Probability Measures. Wiley, New York 1968 | MR | Zbl
[2] Csörgő M., Horváth L.: Weighted Approximations in Probability and Statistics. Wiley, New York 1993 | MR
[3] Csörgő M., Horváth L.: Limit Theorems in Change-point Analysis. Wiley, New York 1997 | MR
[4] Horváth L.: Detecting changes in linear regressions. Statistics 26 (1995), 189–208 | DOI | MR | Zbl
[5] Huber P. J.: Robust Statistics. Wiley, New York 1981 | MR
[6] Hušková M.: Some sequential procedures based on regression rank scores. Nonparametric Statistics 3 (1994), 285–298 | DOI | MR
[7] Hušková M.: Limit theorems for $M$-processes via rank statistics processes. In: Advances in Combinatorial Methods with Applications to Probability and Statistics (N. Balakrishnan, ed.), Birkhäuser, Boston 1997, pp. 521–534 | MR | Zbl
[8] Hušková M.: $L_1$-test procedures for detection of change. In: $L_1$-Statistical Procedures and Related Topics (IMS Lecture Notes – Monograph Ser. 31), Institute of Mathematical Statistics, Beachwood 1997, pp. 56–70 | Zbl
[9] Hušková M.: Some invariant test procedures for detection of structural changes. Kybernetika 36 (2000), 401–414 | MR
[10] Jandhyala V. K., MacNeill I. B.: Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stoch. Process. Appl. 33 (1989), 309–323 | DOI | MR | Zbl
[11] Jurečková J., Sen P. K.: On adaptive scale-equivariant $M$-estimators in linear models. Statist. Decisions, Suplement Issue 1 (1984), 31–41 | MR | Zbl
[12] Jurečková J., Sen P. K.: Regression rank scores scale statistics and studentization in linear models. In: Asymptotic Statistics (M. Hušková and P. Mandl, eds.), Physica–Verlag, Heidelberg, 1994, pp. 111–122 | MR
[13] Ploberger W., Krämer, W., Kontrus K.: A new test for structural stability in linear regression model. J. Econometrics 40 (1989), 307–318 | DOI | MR
[14] Quandt R. E.: Tests of hypothesis that a linear regression systems obeys two separate regimes. J. Amer. Statist. Assoc. 55 (1960), 324–330 | DOI | MR
[15] Víšek T.: Detection of Changes in Econometric Models. Ph.D. Dissertation. Charles University, Prague 1999
[16] Worsley K. J.: Testing for a two-phase multiple regression. Technometrics 25 (1983), 35–42 | DOI | MR | Zbl