Some invariant test procedures for detection of structural changes; behavior under alternatives
Kybernetika, Tome 37 (2001) no. 6, pp. 669-684 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Regression- and scale-invariant $M$-test procedures for detection of structural changes in linear regression model was developed and their limit behavior under the null hypothesis was studied in Hušková [9]. In the present paper the limit behavior under local alternatives is studied. More precisely, it is shown that under local alternatives the considered test statistics have asymptotically normal distribution.
Regression- and scale-invariant $M$-test procedures for detection of structural changes in linear regression model was developed and their limit behavior under the null hypothesis was studied in Hušková [9]. In the present paper the limit behavior under local alternatives is studied. More precisely, it is shown that under local alternatives the considered test statistics have asymptotically normal distribution.
Classification : 62F05, 62J05
Keywords: linear regression; $M$-test procedure; asymptotics
@article{KYB_2001_37_6_a2,
     author = {Hu\v{s}kov\'a, Marie},
     title = {Some invariant test procedures for detection of structural changes; behavior under alternatives},
     journal = {Kybernetika},
     pages = {669--684},
     year = {2001},
     volume = {37},
     number = {6},
     mrnumber = {1936994},
     zbl = {1264.62012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_6_a2/}
}
TY  - JOUR
AU  - Hušková, Marie
TI  - Some invariant test procedures for detection of structural changes; behavior under alternatives
JO  - Kybernetika
PY  - 2001
SP  - 669
EP  - 684
VL  - 37
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_6_a2/
LA  - en
ID  - KYB_2001_37_6_a2
ER  - 
%0 Journal Article
%A Hušková, Marie
%T Some invariant test procedures for detection of structural changes; behavior under alternatives
%J Kybernetika
%D 2001
%P 669-684
%V 37
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_6_a2/
%G en
%F KYB_2001_37_6_a2
Hušková, Marie. Some invariant test procedures for detection of structural changes; behavior under alternatives. Kybernetika, Tome 37 (2001) no. 6, pp. 669-684. http://geodesic.mathdoc.fr/item/KYB_2001_37_6_a2/

[1] Billingsley P.: Convergence of Probability Measures. Wiley, New York 1968 | MR | Zbl

[2] Csörgő M., Horváth L.: Weighted Approximations in Probability and Statistics. Wiley, New York 1993 | MR

[3] Csörgő M., Horváth L.: Limit Theorems in Change-point Analysis. Wiley, New York 1997 | MR

[4] Horváth L.: Detecting changes in linear regressions. Statistics 26 (1995), 189–208 | DOI | MR | Zbl

[5] Huber P. J.: Robust Statistics. Wiley, New York 1981 | MR

[6] Hušková M.: Some sequential procedures based on regression rank scores. Nonparametric Statistics 3 (1994), 285–298 | DOI | MR

[7] Hušková M.: Limit theorems for $M$-processes via rank statistics processes. In: Advances in Combinatorial Methods with Applications to Probability and Statistics (N. Balakrishnan, ed.), Birkhäuser, Boston 1997, pp. 521–534 | MR | Zbl

[8] Hušková M.: $L_1$-test procedures for detection of change. In: $L_1$-Statistical Procedures and Related Topics (IMS Lecture Notes – Monograph Ser. 31), Institute of Mathematical Statistics, Beachwood 1997, pp. 56–70 | Zbl

[9] Hušková M.: Some invariant test procedures for detection of structural changes. Kybernetika 36 (2000), 401–414 | MR

[10] Jandhyala V. K., MacNeill I. B.: Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stoch. Process. Appl. 33 (1989), 309–323 | DOI | MR | Zbl

[11] Jurečková J., Sen P. K.: On adaptive scale-equivariant $M$-estimators in linear models. Statist. Decisions, Suplement Issue 1 (1984), 31–41 | MR | Zbl

[12] Jurečková J., Sen P. K.: Regression rank scores scale statistics and studentization in linear models. In: Asymptotic Statistics (M. Hušková and P. Mandl, eds.), Physica–Verlag, Heidelberg, 1994, pp. 111–122 | MR

[13] Ploberger W., Krämer, W., Kontrus K.: A new test for structural stability in linear regression model. J. Econometrics 40 (1989), 307–318 | DOI | MR

[14] Quandt R. E.: Tests of hypothesis that a linear regression systems obeys two separate regimes. J. Amer. Statist. Assoc. 55 (1960), 324–330 | DOI | MR

[15] Víšek T.: Detection of Changes in Econometric Models. Ph.D. Dissertation. Charles University, Prague 1999

[16] Worsley K. J.: Testing for a two-phase multiple regression. Technometrics 25 (1983), 35–42 | DOI | MR | Zbl