Keywords: nonparametric regression models; smoothness condition
@article{KYB_2001_37_5_a4,
author = {Liese, Friedrich and Steinke, Ingo},
title = {A note on the rate of convergence of local polynomial estimators in regression models},
journal = {Kybernetika},
pages = {585--603},
year = {2001},
volume = {37},
number = {5},
mrnumber = {1877076},
zbl = {1264.62032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_5_a4/}
}
Liese, Friedrich; Steinke, Ingo. A note on the rate of convergence of local polynomial estimators in regression models. Kybernetika, Tome 37 (2001) no. 5, pp. 585-603. http://geodesic.mathdoc.fr/item/KYB_2001_37_5_a4/
[1] Donoho D. L., Liu R. C.: Geometrizing rates of convergence, III. Ann. Statist. 19 (1991), 2, 668–701 | DOI | MR | Zbl
[2] Fan J.: Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 (1992), 420, 998–1004 | MR | Zbl
[3] Fan J.: Local linear regression smoothers and their minimax efficiencies. Ann. Statist. 21 (1993), 196–216 | DOI | MR | Zbl
[4] Fan J., Gasser T., Gijbels I., Brockmann, M., Engel J.: Local polynomial regression: Optimal kernels and asymptotic minimax efficiency. Ann. Inst. Statist. Math. 49 (1997), 1, 79–99 | DOI | MR | Zbl
[5] Gasser T., Müller H.-G.: Estimating regression functions and their derivatives by the kernel method. Scand. J. Statist. 11 (1984), 171–185 | MR | Zbl
[6] Hall P.: On convergence rates in nonparametric problems. Internat. Statist. Rev. 57 (1989), 1, 45–58 | DOI | Zbl
[7] Cam L. Le: Asymptotic Methods in Statistical Decision Theory. Springer–Verlag, Berlin 1986 | MR | Zbl
[8] Liese F., Vajda I.: Convex Statistical Distances. Teubner, Leipzig 1987 | MR | Zbl
[9] Müller H.-G.: Goodness-of-fit diagnostics for regression models. Scand. J. Statist. 19 (1992), 2, 157–172 | MR | Zbl
[10] Müller W. G.: Optimal design for local fitting. J. Statist. Plann. Inference 55 (1996), 3, 389–397 | DOI | MR | Zbl
[11] Nadaraya E. A.: On estimating regression. Theory Probab. Appl. 9 (1964), 141–142 | Zbl
[12] Park D.: Comparison of two response curve estimators. J. Statist. Comput. Simulation 62 (1999), 3, 259–269 | DOI | MR | Zbl
[13] Rényi A.: On measures of entropy and information. In: Proc. 4th Berkeley Symp., Berkeley 1961, Vol. 1, pp. 547–561 | MR
[14] Ruppert D., Wand P.: Multivariate locally weighted least squares regression. Ann. Statist. 22 (1994), 3, 1346–1370 | DOI | MR | Zbl
[15] Schoenberg I. J.: Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 947–950 | DOI | MR | Zbl
[16] Stone C. J.: Consistent nonparametric regression (with discussion). Ann. Statist. 5 (1977), 595–645 | DOI | MR
[17] Stone C. J.: Optimal rates of convergence for nonparametric estimates. Ann. Statist. 8 (1980), 6, 1348–1360 | DOI | MR
[18] Stone C. J.: Optimal global rates of convergence for nonparametric regression. Ann. Statist. 10 (1982), 4, 1040–1053 | DOI | MR | Zbl
[19] Strasser H.: Mathematical Theory of Statistics. De Gruyter, Berlin 1985 | MR | Zbl
[20] Wahba G.: Spline Models for Observational Data. SIAM, Philadelphia 1990 | MR | Zbl
[21] Watson G. S.: Smooth regression analysis. Sankhya, Ser. A 26 (1964), 359–372 | MR | Zbl