Keywords: time-delay system; Lyapunov-Krasovskii functional; multiple delays
@article{KYB_2001_37_4_a5,
author = {Gu, Keqin},
title = {Discretization schemes for {Lyapunov-Krasovskii} functionals in time-delay systems},
journal = {Kybernetika},
pages = {479--504},
year = {2001},
volume = {37},
number = {4},
mrnumber = {1859097},
zbl = {1265.93176},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a5/}
}
Gu, Keqin. Discretization schemes for Lyapunov-Krasovskii functionals in time-delay systems. Kybernetika, Tome 37 (2001) no. 4, pp. 479-504. http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a5/
[1] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia 1994 | MR | Zbl
[2] Boyd S., Yang Q.: Structured and simultaneous Lyapunov functions for system stability problems. Internat. J. Control 49 (1989), 2215–2240 | DOI | MR | Zbl
[3] Souza C. E. De, Li X.: Delay-dependent robust $H_{\infty }$ control of uncertain linear state-delayed systems. Automatica 35 (1999), 1313–1321 | DOI | MR
[4] Doyle J. C., Wall, J., Stein G.: Performance and robustness analysis for structured uncertainty. In: IEEE Conference on Decision and Control 1982, pp. 629–636
[5] Gahinet P., Nemirovski A., Laub A. J., Chilali M.: LMI Control Toolbox for use with MATLAB. Natick, MA MathWorks, 1995
[6] Gu K.: Discretized LMI set in the stability problem of linear uncertain time-delay systems. Internat. J. Control 68 (1997), 923–934 | DOI | MR
[7] Gu K.: Stability of linear time-delay systems with block-diagonal uncertainty. In: 1998 American Control Conference, Philadelphia 1998, pp. 1943–1947
[8] Gu K.: Discretized Lyapunov functional for uncertain systems with multiple time-delay. Internat. J. Control 72 (1999), 16, 1436–1445 | DOI | MR | Zbl
[9] Gu K.: Partial solution of LMI in stability problem of time-delay systems. In: Proc. 38th IEEE Conference on Decision and Control 1999, pp. 227–232
[10] Gu K.: A generalized discretization scheme of Lyapunov functional in the stability problem of linear uncertain time-delay systems. Internat. J. Robust and Nonlinear Control 9 (1999), 1–14 | DOI | MR | Zbl
[11] Gu K.: An integral inequality in the stability problem of time-delay systems. In: Proc. 39th IEEE Conference on Decision and Control 2000
[12] Gu K.: A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. Internat. J. Control 74 (2001), 10, 967–976 | DOI | MR | Zbl
[13] Gu K., Han Q.-L.: Discretized Lyapunov functional for linear uncertain systems with time-varying delay. In: 2000 American Control Conference, Chicago 2000
[14] Gu K., Han Q.-L., Luo A. C. J., Niculescu S.-I.: Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients. Internat. J. Control 74 (2001), 7, 737–744 | DOI | MR | Zbl
[15] Gu K., Luo A. C. J., Niculescu S.-I.: Discretized Lyapunov functional for systems with distributed delay. In: 1999 European Control Conference, Karlsruhe 1999
[16] Gu K., Niculescu S.-I.: Additional dynamics in transformed time-delay systems. IEEE Trans. Automat. Control 45 (2000), 572–575 | DOI | MR | Zbl
[17] Gu K., Niculescu S.-I.: Further remarks on additional dynamics in various model transformations of linear delay systems. In: 2000 American Control Conference, Chicago 2000 | MR | Zbl
[18] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations. Springer–Verlag, New York 1993 | MR
[19] Han Q.-L., Gu K.: On robust stability of time-delay systems with norm-bounded uncertainty. IEEE Trans. Automat. Control, accepted | MR | Zbl
[20] Han Q.-L., Gu K.: Stability of linear systems with time-varying delay: a generalized discretized Lyapunov functional approach. Asian J. of Control, accepted
[21] Huang W.: Generalization of Liapunov’s theorem in a linear delay system. J. Math. Anal. Appl. 142 (1989), 83–94 | DOI | MR | Zbl
[22] Infante E. F., Castelan W. V.: A Lyapunov functional for a matrix difference-differential equation. J. Differential Equations 29 (1978), 439–451 | DOI | MR
[23] Kharitonov V.: Robust stability analysis of time delay systems: A survey. In: Proc. IFAC System Structure Control, Nantes 1998
[24] Kharitonov V. L., Melchor–Aguilar D. A.: Some remarks on model transformations used for stability and robust stability analysis of time-delay systems. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 1142–1147
[25] Kolmanovskii V. B., Niculescu S.-I., Gu K.: Delay effects on stability: a survey. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 1993–1998
[26] Kolmanovskii V. B., Richard J.-P.: Stability of some systems with distributed delays. In: JESA, special issue on “Analysis and Control of Time-delay Systems”, 31 (1997), 971–982
[27] Krasovskii N. N.: Stability of Motion. Stanford University Press, 1963 | MR | Zbl
[28] Li X., Souza C. E. de: Criteria for robust stability and stabilization of uncertain linear systems with state delay. Automatica 33 (1997), 1657–1662 | DOI | MR
[29] Nesterov Y., Nemirovskii A.: Interior–Point Polynomial Algorithms in Convex Programming SIAM, Philadelphia 199. | MR
[30] Niculescu S. I., Dugard, L., Dion J. M.: Stabilité et stabilisation robustes des systèmes à retard. In: Proc. Journées Robustesse, Toulouse 1995
[31] Niculescu S. I., Souza C. E. de, Dion J. M., Dugard L.: Robust stability and stabilization of uncertain linear systems with state delay: single delay case (I), and Multiple delays case (II). In: Proc. IFAC Workshop Robust Control Design, Rio de Janeiro 1994, pp. 469–474 and 475–480
[32] Niculescu S. I., Verriest E. I., Dugard, L., Dion J. M.: Stability and robust stability of time-delay systems: A guided tour. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Information Sciences), Springer–Verlag, London 1997, pp. 1–71 | MR
[33] Packard A., Doyle J.: The complex structured singular value. Automatica 29 (1993), 71–109 | DOI | MR | Zbl
[34] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control. Prentice Hall, Englewood Cliffs, N.J. 1996 | Zbl