An asymptotic state observer for a class of nonlinear delay systems
Kybernetika, Tome 37 (2001) no. 4, pp. 459-478 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The problem of state reconstruction from input and output measurements for nonlinear time delay systems is studied in this paper and a state observer is proposed that is easy to implement and, under suitable assumptions on the system and on the input function, gives exponential observation error decay. The proposed observer is itself a delay system and can be classified as an identity observer, in that it is such that if at a given time instant the system and observer states coincide, on a suitable Hilbert space, the observation error remains zero in all following time instants. The computation of the observer gain is straightforward. Computer simulations are reported that show the good performance of the observer.
The problem of state reconstruction from input and output measurements for nonlinear time delay systems is studied in this paper and a state observer is proposed that is easy to implement and, under suitable assumptions on the system and on the input function, gives exponential observation error decay. The proposed observer is itself a delay system and can be classified as an identity observer, in that it is such that if at a given time instant the system and observer states coincide, on a suitable Hilbert space, the observation error remains zero in all following time instants. The computation of the observer gain is straightforward. Computer simulations are reported that show the good performance of the observer.
Classification : 93B07, 93C10, 93C23
Keywords: nonlinear system; time-delay system; observability
@article{KYB_2001_37_4_a4,
     author = {Germani, Alfredo and Manes, Costanzo and Pepe, Pierdomenico},
     title = {An asymptotic state observer for a class of nonlinear delay systems},
     journal = {Kybernetika},
     pages = {459--478},
     year = {2001},
     volume = {37},
     number = {4},
     mrnumber = {1859096},
     zbl = {1265.93029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a4/}
}
TY  - JOUR
AU  - Germani, Alfredo
AU  - Manes, Costanzo
AU  - Pepe, Pierdomenico
TI  - An asymptotic state observer for a class of nonlinear delay systems
JO  - Kybernetika
PY  - 2001
SP  - 459
EP  - 478
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a4/
LA  - en
ID  - KYB_2001_37_4_a4
ER  - 
%0 Journal Article
%A Germani, Alfredo
%A Manes, Costanzo
%A Pepe, Pierdomenico
%T An asymptotic state observer for a class of nonlinear delay systems
%J Kybernetika
%D 2001
%P 459-478
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a4/
%G en
%F KYB_2001_37_4_a4
Germani, Alfredo; Manes, Costanzo; Pepe, Pierdomenico. An asymptotic state observer for a class of nonlinear delay systems. Kybernetika, Tome 37 (2001) no. 4, pp. 459-478. http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a4/

[1] Banks H. T., Kappel F.: Spline approximations for functional differential equations. J. Differential Equations 34 (1979), 496–522 | DOI | MR | Zbl

[2] Bensoussan A., Prato G. Da, Delfour M. C., Mitter S. K.: Representation and control of Infinite Dimensional Systems. Birkhauser, Boston 1992 | MR | Zbl

[3] Ciccarella G., Mora, M. Dalla, Germani A.: A Luenberger-like observer for nonlinear systems. Internat. J. Control 57 (1993), 3, 537–556 | DOI | MR | Zbl

[4] Mora M. Dalla, Germani, A., Manes C.: Design of state observers from a drift-observability property. IEEE Trans. Automat. Control 45 (2000), 6, 1536–1540 | DOI | MR

[5] Dambrine M., Goubet, A., Richard J. P.: New results on constrained stabilizing control of time-delay systems. In: Proc. 34th IEEE Conference on Decision and Control, Vol. 2, New Orleans 1995, pp. 2052–2057

[6] Fairman F. W., Kumar A.: Delayless observers for systems with delay. IEEE Trans. Automat.Control AC-31 (1986), 3, 258–259 | DOI | Zbl

[7] Fattouh A., Sename, O., Dion J. M.: Robust observer design for time-delay sysems: a Riccati equation approach. Kybernetika 35 (1999), 6, 753–764 | MR

[8] Germani A., Manes, C., Pepe P.: Linearization of input-output mapping for nonlinear delay systems via static state feedback. In: Proc. of IMACS Multiconference on Computational Engineering in Systems Applications, Vol. 1, Lille 1996, pp. 599–602

[9] Germani A., Manes, C., Pepe P.: Linearization and Decoupling of nonlinear delay systems. In: Proc. IEEE 1998 American Control Conference (ACC’98), Philadelphia 1998

[10] Germani A., Manes, C., Pepe P.: A state observer for nonlinear delay systems. In: Proc. 37th IEEE Conference on Decision and Control (CDC’98), Tampa 1998, Vol. 1, pp. 355–360

[11] Germani A., Manes, C., Pepe P.: An observer for M. I.M.O. nonlinear delay systems. In: IFAC World Congress 99, Beijing 1999, Vol. E, pp. 243–248

[12] Germani A., Manes C.: State observers for nonlinear systems with Smooth/Bounded Input. Kybernetika 35 (1999), 4, 393-413 | MR

[13] Germani A., Manes, C., Pepe P.: Local asymptotic stability for nonlinear state feedback delay systems. Kybernetika 36 (2000), 1, 31–42 | MR

[14] Germani A., Manes, C., Pepe P.: State observation of nonlinear systems with delayed Output Measurements. In: IFAC Workshop on Time Delay Systems (LTDS2000), Ancona 2000

[15] Germani A., Manes, C., Pepe P.: A twofold spline approximation for finite horizon LQG control of hereditary systems. SIAM J. Control Optim. 39 (2000), 4, 1233–1295 | DOI | MR | Zbl

[16] Gibson J. S.: Linear quadratic optimal control of hereditary differential systems: infinite-dimensional Riccati equations and numerical approximations. SIAM J. Control Optim. 31 (1983), 95–139 | DOI | MR | Zbl

[17] Isidori A.: Nonlinear Control Systems. Third edition. Springer–Verlag, Berlin 1995 | Zbl

[18] Lee E. B., Olbrot A. W.: Observability and related structural results for linear hereditary systems. Internat. J. Control 34 (1981), 6, 1061–1078 | DOI | MR | Zbl

[19] Lehman B., Bentsman J., Lunel S. V., Verriest E. I.: Vibrational control of nonlinear time lag systems with bounded delay: averaging theory, stabilizability, and transient behavior. IEEE Trans. Automat. Control 5 (1994), 898–912, 1994 | DOI | MR | Zbl

[20] Moog C. H., Castro, R., Velasco M.: The disturbance decoupling problem for nonlinear systems with multiple time-delays: static state feedback solutions. In: Proc. IMACS Multiconference on Computational Engineering in Systems Applications, Lille 1996

[21] Olbrot A. W.: Observability and observers for a class of Linear systems with delays. IEEE Trans. Automat. Control AC-26 (1981), 2, 513–517 | DOI | MR | Zbl

[22] Pearson A. E., Fiagbedzi Y. A.: An observer for time lag systems. IEEE Trans. Automat. Control 34 (1989), 7, 775–777 | DOI | MR | Zbl

[23] Rosen I. G.: Difference equation state approximations for nonlinear hereditary control problems. SIAM J. Control Optim. 2 (1984), 302–326 | DOI | MR | Zbl

[24] Salamon D.: Observers and duality between observation and state feedback for time delay systems. IEEE Trans. Automat. Control AC-25 (1980), 6, 1187–1192 | DOI | MR | Zbl

[25] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays. IEEE Trans. Automat. Control AC-31 (1986), 6, 543–550 | DOI | MR | Zbl

[26] Yao Y. X., Zhang Y. M., Kovacevic R.: Functional observer and state feedback for input time-delay systems. Internat. J. Control 66 (1997), 4, 603–617 | DOI | MR | Zbl