@article{KYB_2001_37_4_a3,
author = {Sename, Olivier},
title = {New trends in design of observers for time-delay systems},
journal = {Kybernetika},
pages = {427--458},
year = {2001},
volume = {37},
number = {4},
mrnumber = {1859095},
zbl = {1265.93108},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a3/}
}
Sename, Olivier. New trends in design of observers for time-delay systems. Kybernetika, Tome 37 (2001) no. 4, pp. 427-458. http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a3/
[1] Chen J., Patton R. J.: Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers, Dordrecht 1999 | Zbl
[2] Choi H. H., Chung M. J.: Observer-based $H_{\infty }$ controller design for state delayed linear systems. Automatica 32 (1996), 7, 1073–1075 | DOI | MR
[3] Choi H. H., Chung M. J.: Robust observer-based $H_{\infty }$ controller design for linear uncertain time-delay systems. Automatica 33 (1997), 9, 1749–1752 | MR
[5] Darouach M., Zasadzinski, M., Xu S. J.: Full order observers for linear systems with unknown inputs. IEEE Trans. Automat. Control 39 (1994), 3, 606–609 | DOI | MR | Zbl
[6] DeSouza C. E., Palhares R. M., Peres P. L. D.: Robust $H_\infty $ filtering for uncertain linear systems with multiple time-varying state delays: An LMI approach. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 2023–2028
[7] Dugard L., (eds) E. I. Verriest: Stability and Control of Time-delay Systems. (Lecture Notes in Control and Inform. Sci. 228.) Springer Verlag, Berlin 1998 | MR
[8] Eising R.: Pole assignment for systems over rings. Systems Control Lett. 2 (1982), 1, 225–229 | DOI | MR | Zbl
[9] Emre E., Khargonekar P. P.: Regulation of split linear systems over rings: Coefficient-assignment and observers. IEEE Trans. Automat. Control 27 (1982), 1, 104–113 | DOI | MR | Zbl
[10] Fattouh A.: Robust Observation and Digital Control for Systems with Time-delays (in French). Ph. D. Thesis, I.N.P.G – Laboratoire d’Automatique de Grenoble, Grenoble 2000
[11] Fattouh A., Sename, O., Dion J.–M.: $H_{\infty }$ observer design for time-delay systems. In: Proc. 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 4545–4546
[12] Fattouh A., Sename, O., Dion J.–M.: Robust observer design for time-delay systems: A Riccati equation approach. Kybernetika 35 (1999), 6, 753–764 | MR
[13] Fattouh A., Sename, O., Dion J.–M.: An unknown input observer design for linear time-delay systems. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 4222–4227
[14] Fattouh A., Sename, O., Dion J.–M.: $H_\infty $ controller and observer design for linear systems with point and distributed time-delays: An LMI approach. In: 2nd IFAC Workshop on Linear Time Delay Systems, Ancône 2000
[15] Fattouh A., Sename, O., Dion J.–M.: An LMI approach to robust observer design for linear time-delay systems. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000
[16] Fattouh A., Sename, O., Dion J.–M.: Robust observer design for linear uncertain time-delay systems: A factorization approach. In: 14th Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000
[17] Fiagbedzi Y. A., Pearson A. E.: Exponential state observer for time-lag systems. Internat. J. Control 51 (1990), 1, 189–204 | DOI | MR | Zbl
[18] Habets L.: Algebraic and Computational Aspects of Time-delay Systems. Ph. D. Thesis, Eindhoven University of Technology 1994 | MR | Zbl
[19] Hou M., Müller P. C.: Design of observers for linear systems with unknown inputs. IEEE Trans. Automat. Control 37 (1992), 6, 871–875 | DOI | MR | Zbl
[20] Ivanescu D., Snyder A. F., Dion J.–M., Dugard L., Georges, D., Hadjsaid N.: Robust stabilizing controller for an interconnected power system: A time delay approach. In: 14th Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000
[21] Jankovic M., Kolmanovsky I.: Controlling nonlinear systems through time-delays: an automotive perspective. In: Proc. 8th European Control Conference ECC’99, Karlsruhe 1999
[22] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable Bezout factorizations and feedback control of linear time-delay systems. Internat. J. Control 43 (1986), 3, 837–857 | DOI | MR | Zbl
[23] Kučera V.: Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979 | MR | Zbl
[24] Lee E.B., Lu W. S.: Coefficient assignability for linear systems with delays. IEEE Trans. Automat. Control AC-29 (1984), 128–131 | MR | Zbl
[25] Lee E. B., Olbrot A. W.: Observability and related structural results for linear hereditary systems. Internat. J. Control 34 (1981), 1061–1078 | DOI | MR | Zbl
[26] Lee E. B., Zak S. H.: On spectrum placement for linear time-invariant delay systems. IEEE Trans. Automat. Control AC-27 (1982), 446–449 | DOI | MR | Zbl
[27] Lee J. H., Kim S. W., Kwon W. H.: Memoryless $h^{\infty }$ controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 1, 159–162 | DOI | MR
[29] Manitius A., Triggiani R.: Function space controllability of linear retarded systems: A derivation from abstract operator conditions. SIAM J. Control Optim. 16 (1978), 4, 599–645 | DOI | MR | Zbl
[30] Morse A. S.: Ring models for delay differential systems. Automatica 12 (1976), 529–531 | DOI | MR | Zbl
[31] Niculescu S. I.: On the stability and stabilization of linear systems with delayed-state (in French). Ph. D. Thesis, Laboratoire d’Automatique de Grenoble, INPG, 1996
[32] Niculescu S. I., Trofino–Neto A., Dion, J.–M., Dugard L.: Delay-dependent stability of linear systems with delayed state: An l. m.i. approach. In: Proc. 34th Conference on Decision and Control, New Orleans 1995, pp. 1495–1496
[33] Nobuyama E., Kitamori T.: Spectrum assignment and parameterization of all stabilizing compensators for time-delay systems. In: Proc. 29th Conference on Decision and Control, Honolulu 1990, pp. 3629–3634
[34] Pearson A. E., Fiagbedzi Y. A.: An observer for time lag systems. IEEE Trans. Automat. Control 34 (1989), 7, 775–777 | DOI | MR | Zbl
[35] Picard P., Lafay J. F., Kučera V.: Feedback realization of nonsingular precompensators for linear systems with delays. IEEE Trans. Automat. Control 42 (1997), 6, 848–852 | DOI | MR | Zbl
[36] Picard P., Sename, O., Lafay J. F.: Observers and observability indices for linear systems with delays. In: CESA 96, IEEE Conference on Computational Engineering in Systems Applications, volume 1, Lille 1996, pp. 81–86
[37] Pourboghrat F., Chyung D. H.: Exact state-variable reconstruction of delay systems. Internat. J. Control 44 (1986), 3, 867–877 | DOI | MR | Zbl
[38] Richard S., Chevrel, P., Maillard B.: Active control of future vehicle drivelines. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 3752–3767
[39] Salamon D.: Observers and duality between observation and state feedback for time delay systems. IEEE Trans. Automat. Control 25 (1980), 6, 1187–1192 | DOI | MR | Zbl
[41] Sename O.: Unknown input robust observers for time-delay systems. In: 36th IEEE Conference on Decision and Control, San Diego 1997, pp. 1629–1630
[42] Sename O., Lafay J. F., Rabah R.: Controllability indices of linear systems with delays. Kybernetika 6 (1995), 559–580 | MR | Zbl
[43] Sontag E. D.: Linear systems over commutative rings; a survey. Ricerche Automat. 7 (1976), 1–16
[44] Su J.-H.: Further results on the robust stability of linear systems with a single time delay. Systems Control Lett. 23 (1994), 375–379 | DOI | MR | Zbl
[45] Tornambè A.: Simple observer-based control law for time lag systems. Internat. J. Systems Sci. 23 (1992), 9, 1463–1473 | DOI | MR | Zbl
[46] Wang Z., Huang, B., Unbehauen H.: Robust $H_{\infty }$ observer design for uncertain time-delay systems: (i) the continuous-time case. In: IFAC 14th World Congress, Beijing 1999, pp. 231–236
[47] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays. IEEE Trans. Automat. Control AC-31 (1986), 6, 543–550 | DOI | MR | Zbl
[48] Watanabe K., Ouchi T.: An observer of systems with delays in state variables. Internat. J. Control 41 (1985), 1, 217–229 | DOI | MR
[49] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Springer Verlag, New York 1979 | MR | Zbl
[50] Yao Y. X., Zhang Y. M., Kovacevic R.: Parameterization of observers for time delay systems and its application in observer design. IEE Proc. – Control Theory Appl. 143 (1996), 3, 225–232
[51] Yao Y. X., Zhang Y. M., Kovacevic R.: Functional observer and state feedback for input time-delay systems. Internat. J. Control 66 (1997), 4, 603–617 | DOI | MR | Zbl