Keywords: delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach
@article{KYB_2001_37_4_a2,
author = {Gluesing-Luerssen, Heide and Vettori, Paolo and Zampieri, Sandro},
title = {The algebraic structure of delay-differential systems: a behavioral perspective},
journal = {Kybernetika},
pages = {397--426},
year = {2001},
volume = {37},
number = {4},
mrnumber = {1859094},
zbl = {1265.93064},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a2/}
}
TY - JOUR AU - Gluesing-Luerssen, Heide AU - Vettori, Paolo AU - Zampieri, Sandro TI - The algebraic structure of delay-differential systems: a behavioral perspective JO - Kybernetika PY - 2001 SP - 397 EP - 426 VL - 37 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a2/ LA - en ID - KYB_2001_37_4_a2 ER -
Gluesing-Luerssen, Heide; Vettori, Paolo; Zampieri, Sandro. The algebraic structure of delay-differential systems: a behavioral perspective. Kybernetika, Tome 37 (2001) no. 4, pp. 397-426. http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a2/
[1] Becker T., Weispfennig V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York 1993 | MR
[2] Berenstein C. A., Dostal M. A.: The Ritt theorem in several variables. Ark. Mat. 12 (1974), 267–280 | DOI | MR | Zbl
[3] Berenstein C. A., Struppa D. C.: Complex analysis and convolution equations. Several complex variables. Encyclopedia Math. Sci. 54 (1993), 1–108
[4] Berenstein C. A., Yger A.: Ideals generated by exponential-polynomials. Adv. in Math. 60 (1986), 1–80 | DOI | MR | Zbl
[5] Brezis H.: Analyse fonctionnelle: theorie et applications. Masson, Paris 1983 | MR | Zbl
[6] Cohen A. M., Cuypers, H., (eds.) H. Sterk: Some Tapas of Computer Algebra. Springer, Berlin 1999 | MR | Zbl
[7] Cohn P. M.: Free Rings and Their Relations. Academic Press, London 1985. Second edition | MR | Zbl
[8] Diab A.: Sur les zéros communs des polynômes exponentiels. C. R. Acad. Sci. Paris Sér. A 281 (1975), 757–758 | MR | Zbl
[9] Ehrenpreis L.: Solutions of some problems of division. Part III. Division in the spaces ${\mathcal D}^{\prime },\,{\mathcal H},\,{\mathcal Q}_A,\,{\mathcal O}$. Amer. J. Math. 78 (1956), 685–715 | MR | Zbl
[10] Folland G. B.: Fourier Analysis and its Applications. Wadsworth & Brooks, Pacific Grove 1992 | MR | Zbl
[11] Gluesing–Luerssen H.: A convolution algebra of delay-differential operators and a related problem of finite spectrum assignability. Math. Control Signal Systems 13 (2000), 22–40 | DOI | MR | Zbl
[12] Gluesing–Luerssen H.: A behavioral approach to delay differential equations. SIAM J. Control Optim. 35 (1997), 480–499 | DOI | MR
[13] Gluesing–Luerssen H.: Linear delay-differential systems with commensurate delays: An algebraic approach. Habilitationsschrift at the University of Oldenburg 2000. Accepted for publication as Lecture Notes in Mathematics, Springer | MR | Zbl
[14] Habets L. C. G. J. M.: System equivalence for AR-systems over rings – With an application to delay-differential systems. Math. Control Signal Systems 12 (1999), 219–244 | DOI | MR | Zbl
[15] Habets L. C. G. J. M., Eijndhoven S. J. L.: Behavioral controllability of time-delay systems with incommensurate delays. In: Proc. IFAC Workshop on Linear Time Delay Systems (A. M. Perdon, ed.), Ancona 2000, pp. 195–201
[16] Helmer O.: The elementary divisor theorem for certain rings without chain condition. Bull. Amer. Math. Soc. 49 (1943), 225–236 | DOI | MR | Zbl
[17] Jacobson N.: Basic Algebra I. Second edition. W. H. Freeman, New York 1985 | MR | Zbl
[18] Kamen E. W.: On an algebraic theory of systems defined by convolution operators. Math. Systems Theory 9 (1975), 57–74 | DOI | MR | Zbl
[19] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable Bezout factorizations and feedback control of linear time-delay systems. Internat. J. Control 43 (1986), 837–857 | DOI | MR | Zbl
[20] Kaplansky I.: Elementary divisors and modules. Trans. Amer. Math. Soc. 66 (1949), 464–491 | DOI | MR | Zbl
[21] Kelley J. L., Namioka I.: Topological Vector Spaces. Van Nostrand, 1963 | MR
[22] Lang S.: Algebra. Second edition. Addison–Wesley, Reading, N.J. 1984 | MR | Zbl
[23] Lezama O., Vasquez O.: On the simultaneous basis property in Prüfer domains. Acta Math. Hungar. 80 (1998), 169–176 | DOI | MR
[24] Malgrange B.: Existence et approximations des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier 6 (1955/1956), 271–355 | DOI | MR
[25] Meisters G. H.: Periodic distributions and non-Liouville numbers. J. Funct. Anal. 26 (1977), 68–88 | DOI | MR | Zbl
[26] Mounier H.: Algebraic interpretations of the spectral controllability of a linear delay system. Forum Math. 10 (1998), 39–58 | DOI | MR | Zbl
[27] Niven I.: Irrational Numbers. Wiley, New York 1956 | MR | Zbl
[28] Oberst U.: Multidimensional constant linear systems. Acta Appl. Math. 20 (1990), 1–175 | DOI | MR | Zbl
[29] Olbrot A. W., Pandolfi L.: Null controllability of a class of functional differential systems. Internat. J. Control 47 (1988), 193–208 | DOI | MR | Zbl
[30] Parreau F., Weit Y.: Schwartz’s theorem on mean periodic vector-valued functions. Bull. Soc. Math. France 117 (1989), 3, 319–325 | MR | Zbl
[31] Polderman J. W., Willems J. C.: Introduction to Mathematical Systems Theory. A behavioral approach. Springer, Boston 1998 | MR | Zbl
[32] Rocha P., Wood J.: Trajectory control and interconnection of 1D and $n$D systems. SIAM J. Control Optim. 40 (2001), 107–134 | DOI | MR
[33] Schwartz L.: Théorie génerale des fonctions moyennes-périodiques. Ann. of Math. (2) 48 (1947), 857–929 | DOI
[34] Treves F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York 1967 | MR | Zbl
[35] Eijndhoven S. J. L. van, Habets L. C. G. J. M.: Equivalence of Convolution Systems in a Behavioral Framework. Report RANA 99-25. Eindhoven University of Technology 1999
[36] Poorten A. J. van der, Tijdeman R.: On common zeros of exponential polynomials. Enseign. Math. (2) 21 (1975), 57–67 | MR
[37] Vettori P.: Delay Differential Systems in the Behavioral Approach. Ph. D. Thesis, Università di Padova 1999
[38] Vettori P., Zampieri S.: Controllability of systems described by convolutional or delay-differential equations. SIAM J. Control Optim. 39 (2000), 728–756 | DOI | MR | Zbl
[39] Vettori P., Zampieri S.: Some results on systems described by convolutional equations. IEEE Trans. Automat Control. AC–46 (2001), 793–797 | DOI | MR | Zbl
[40] Willems J. C.: On interconnection, control, and feedback. IEEE Trans. Automat. Control AC-42 (1997), 326–339 | DOI | MR
[41] Zemanian A. H.: Distribution Theory and Transform Analysis. McGraw–Hill, New York 1965 | MR | Zbl