The algebraic structure of delay-differential systems: a behavioral perspective
Kybernetika, Tome 37 (2001) no. 4, pp. 397-426 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the study of this class of systems functional analytic methods need to be introduced and general convolutional equations have to be incorporated. Whenever it is possible, the results will be linked to the relevant control theoretic notions.
This paper presents a survey on the recent contributions to linear time- invariant delay-differential systems in the behavioral approach. In this survey both systems with commensurate and with noncommensurate delays will be considered. The emphasis lies on the investigation of the relationship between various systems descriptions. While this can be understood in a completely algebraic setting for systems with commensurate delays, this is not the case for systems with noncommensurate delays. In the study of this class of systems functional analytic methods need to be introduced and general convolutional equations have to be incorporated. Whenever it is possible, the results will be linked to the relevant control theoretic notions.
Classification : 34K35, 47N70, 93B25, 93C05, 93C23
Keywords: delay-differential system; algebraic methods; general convolution equations; noncommensurate delays; delay-differential systems; behavioral approach
@article{KYB_2001_37_4_a2,
     author = {Gluesing-Luerssen, Heide and Vettori, Paolo and Zampieri, Sandro},
     title = {The algebraic structure of delay-differential systems: a behavioral perspective},
     journal = {Kybernetika},
     pages = {397--426},
     year = {2001},
     volume = {37},
     number = {4},
     mrnumber = {1859094},
     zbl = {1265.93064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a2/}
}
TY  - JOUR
AU  - Gluesing-Luerssen, Heide
AU  - Vettori, Paolo
AU  - Zampieri, Sandro
TI  - The algebraic structure of delay-differential systems: a behavioral perspective
JO  - Kybernetika
PY  - 2001
SP  - 397
EP  - 426
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a2/
LA  - en
ID  - KYB_2001_37_4_a2
ER  - 
%0 Journal Article
%A Gluesing-Luerssen, Heide
%A Vettori, Paolo
%A Zampieri, Sandro
%T The algebraic structure of delay-differential systems: a behavioral perspective
%J Kybernetika
%D 2001
%P 397-426
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a2/
%G en
%F KYB_2001_37_4_a2
Gluesing-Luerssen, Heide; Vettori, Paolo; Zampieri, Sandro. The algebraic structure of delay-differential systems: a behavioral perspective. Kybernetika, Tome 37 (2001) no. 4, pp. 397-426. http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a2/

[1] Becker T., Weispfennig V.: Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New York 1993 | MR

[2] Berenstein C. A., Dostal M. A.: The Ritt theorem in several variables. Ark. Mat. 12 (1974), 267–280 | DOI | MR | Zbl

[3] Berenstein C. A., Struppa D. C.: Complex analysis and convolution equations. Several complex variables. Encyclopedia Math. Sci. 54 (1993), 1–108

[4] Berenstein C. A., Yger A.: Ideals generated by exponential-polynomials. Adv. in Math. 60 (1986), 1–80 | DOI | MR | Zbl

[5] Brezis H.: Analyse fonctionnelle: theorie et applications. Masson, Paris 1983 | MR | Zbl

[6] Cohen A. M., Cuypers, H., (eds.) H. Sterk: Some Tapas of Computer Algebra. Springer, Berlin 1999 | MR | Zbl

[7] Cohn P. M.: Free Rings and Their Relations. Academic Press, London 1985. Second edition | MR | Zbl

[8] Diab A.: Sur les zéros communs des polynômes exponentiels. C. R. Acad. Sci. Paris Sér. A 281 (1975), 757–758 | MR | Zbl

[9] Ehrenpreis L.: Solutions of some problems of division. Part III. Division in the spaces ${\mathcal D}^{\prime },\,{\mathcal H},\,{\mathcal Q}_A,\,{\mathcal O}$. Amer. J. Math. 78 (1956), 685–715 | MR | Zbl

[10] Folland G. B.: Fourier Analysis and its Applications. Wadsworth & Brooks, Pacific Grove 1992 | MR | Zbl

[11] Gluesing–Luerssen H.: A convolution algebra of delay-differential operators and a related problem of finite spectrum assignability. Math. Control Signal Systems 13 (2000), 22–40 | DOI | MR | Zbl

[12] Gluesing–Luerssen H.: A behavioral approach to delay differential equations. SIAM J. Control Optim. 35 (1997), 480–499 | DOI | MR

[13] Gluesing–Luerssen H.: Linear delay-differential systems with commensurate delays: An algebraic approach. Habilitationsschrift at the University of Oldenburg 2000. Accepted for publication as Lecture Notes in Mathematics, Springer | MR | Zbl

[14] Habets L. C. G. J. M.: System equivalence for AR-systems over rings – With an application to delay-differential systems. Math. Control Signal Systems 12 (1999), 219–244 | DOI | MR | Zbl

[15] Habets L. C. G. J. M., Eijndhoven S. J. L.: Behavioral controllability of time-delay systems with incommensurate delays. In: Proc. IFAC Workshop on Linear Time Delay Systems (A. M. Perdon, ed.), Ancona 2000, pp. 195–201

[16] Helmer O.: The elementary divisor theorem for certain rings without chain condition. Bull. Amer. Math. Soc. 49 (1943), 225–236 | DOI | MR | Zbl

[17] Jacobson N.: Basic Algebra I. Second edition. W. H. Freeman, New York 1985 | MR | Zbl

[18] Kamen E. W.: On an algebraic theory of systems defined by convolution operators. Math. Systems Theory 9 (1975), 57–74 | DOI | MR | Zbl

[19] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable Bezout factorizations and feedback control of linear time-delay systems. Internat. J. Control 43 (1986), 837–857 | DOI | MR | Zbl

[20] Kaplansky I.: Elementary divisors and modules. Trans. Amer. Math. Soc. 66 (1949), 464–491 | DOI | MR | Zbl

[21] Kelley J. L., Namioka I.: Topological Vector Spaces. Van Nostrand, 1963 | MR

[22] Lang S.: Algebra. Second edition. Addison–Wesley, Reading, N.J. 1984 | MR | Zbl

[23] Lezama O., Vasquez O.: On the simultaneous basis property in Prüfer domains. Acta Math. Hungar. 80 (1998), 169–176 | DOI | MR

[24] Malgrange B.: Existence et approximations des solutions des équations aux dérivées partielles et des équations de convolution. Ann. Inst. Fourier 6 (1955/1956), 271–355 | DOI | MR

[25] Meisters G. H.: Periodic distributions and non-Liouville numbers. J. Funct. Anal. 26 (1977), 68–88 | DOI | MR | Zbl

[26] Mounier H.: Algebraic interpretations of the spectral controllability of a linear delay system. Forum Math. 10 (1998), 39–58 | DOI | MR | Zbl

[27] Niven I.: Irrational Numbers. Wiley, New York 1956 | MR | Zbl

[28] Oberst U.: Multidimensional constant linear systems. Acta Appl. Math. 20 (1990), 1–175 | DOI | MR | Zbl

[29] Olbrot A. W., Pandolfi L.: Null controllability of a class of functional differential systems. Internat. J. Control 47 (1988), 193–208 | DOI | MR | Zbl

[30] Parreau F., Weit Y.: Schwartz’s theorem on mean periodic vector-valued functions. Bull. Soc. Math. France 117 (1989), 3, 319–325 | MR | Zbl

[31] Polderman J. W., Willems J. C.: Introduction to Mathematical Systems Theory. A behavioral approach. Springer, Boston 1998 | MR | Zbl

[32] Rocha P., Wood J.: Trajectory control and interconnection of 1D and $n$D systems. SIAM J. Control Optim. 40 (2001), 107–134 | DOI | MR

[33] Schwartz L.: Théorie génerale des fonctions moyennes-périodiques. Ann. of Math. (2) 48 (1947), 857–929 | DOI

[34] Treves F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, New York 1967 | MR | Zbl

[35] Eijndhoven S. J. L. van, Habets L. C. G. J. M.: Equivalence of Convolution Systems in a Behavioral Framework. Report RANA 99-25. Eindhoven University of Technology 1999

[36] Poorten A. J. van der, Tijdeman R.: On common zeros of exponential polynomials. Enseign. Math. (2) 21 (1975), 57–67 | MR

[37] Vettori P.: Delay Differential Systems in the Behavioral Approach. Ph. D. Thesis, Università di Padova 1999

[38] Vettori P., Zampieri S.: Controllability of systems described by convolutional or delay-differential equations. SIAM J. Control Optim. 39 (2000), 728–756 | DOI | MR | Zbl

[39] Vettori P., Zampieri S.: Some results on systems described by convolutional equations. IEEE Trans. Automat Control. AC–46 (2001), 793–797 | DOI | MR | Zbl

[40] Willems J. C.: On interconnection, control, and feedback. IEEE Trans. Automat. Control AC-42 (1997), 326–339 | DOI | MR

[41] Zemanian A. H.: Distribution Theory and Transform Analysis. McGraw–Hill, New York 1965 | MR | Zbl