Trajectory tracking control for nonlinear time-delay systems
Kybernetika, Tome 37 (2001) no. 4, pp. 370-380 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The reference trajectory tracking problem is considered in this paper and (constructive) sufficient conditions are given for the existence of a causal state feedback solution. The main result is introduced as a byproduct of input-output feedback linearization.
The reference trajectory tracking problem is considered in this paper and (constructive) sufficient conditions are given for the existence of a causal state feedback solution. The main result is introduced as a byproduct of input-output feedback linearization.
Classification : 93B18, 93B52, 93C10, 93C15, 93C23, 93D15
Keywords: trajectory tracking problem; feedback solution; nonlinear time-delay system
@article{KYB_2001_37_4_a0,
     author = {M\'arquez-Mart{\'\i}nez, Luis Alejandro and Moog, Claude H.},
     title = {Trajectory tracking control for nonlinear time-delay systems},
     journal = {Kybernetika},
     pages = {370--380},
     year = {2001},
     volume = {37},
     number = {4},
     mrnumber = {1859092},
     zbl = {1265.93059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a0/}
}
TY  - JOUR
AU  - Márquez-Martínez, Luis Alejandro
AU  - Moog, Claude H.
TI  - Trajectory tracking control for nonlinear time-delay systems
JO  - Kybernetika
PY  - 2001
SP  - 370
EP  - 380
VL  - 37
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a0/
LA  - en
ID  - KYB_2001_37_4_a0
ER  - 
%0 Journal Article
%A Márquez-Martínez, Luis Alejandro
%A Moog, Claude H.
%T Trajectory tracking control for nonlinear time-delay systems
%J Kybernetika
%D 2001
%P 370-380
%V 37
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a0/
%G en
%F KYB_2001_37_4_a0
Márquez-Martínez, Luis Alejandro; Moog, Claude H. Trajectory tracking control for nonlinear time-delay systems. Kybernetika, Tome 37 (2001) no. 4, pp. 370-380. http://geodesic.mathdoc.fr/item/KYB_2001_37_4_a0/

[1] Antoniades C., Christofides D.: Robust control of nonlinear time-delay systems. Internat. J. Math. Comp. Sci. 9 (1999), 4, 811–837 | MR | Zbl

[2] Conte G., Perdon A. M.: The disturbance decoupling problem for systems over a ring. SIAM J. Control Optim. 33 (1995), 3, 750–764 | DOI | MR | Zbl

[3] Germani A., Manes, C., Pepe P.: Linearization and decoupling of nonlinear delay systems. In: Proc. American Control Conference, Philadelphia 1998, pp. 1948–1952

[4] Isidori A.: Nonlinear Control Systems. Second edition. Springer–Verlag, Berlin 1989 | MR | Zbl

[5] Kolmanovskii V. B., Niculescu S. I., Gu K.: Delay effects on stability and control: a survey. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999

[6] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equations. Academic Press, London 1986 | MR | Zbl

[7] Márquez–Martínez L. A., Moog C. H.: On the input-output linearization of nonlinear time-delay systems. In: Proc. IFAC Conference on System Structure and Control, Nantes 1998

[8] Moog C. H., Castro–Linares R., Velasco–Villa, M., Márquez–Martínez L. A.: Disturbance decoupling for time-delay nonlinear systems. IEEE Trans. Automat. Control 5 (2000), 305–309 | DOI

[9] Niculescu S. I., Verriest E. I., Dugard, L., Dion J.-M.: Stability and robust stability of time-delay systems: A guided tour. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Information Sciences 228), Springer–Verlag, Berlin 1998 | MR | Zbl

[10] Šebek M.: Asymptotic tracking for 2-D and delay-differential systems. Automatica 24 (1988), 5, 711–713 | DOI | Zbl

[11] Wu W., Chou Y. S.: Output tracking control of uncertain nonlinear systems with an input time delay. IEE Proc. – Control Theory Appl. 143 (1996), 4, 7 | Zbl