Stabilization of fractional exponential systems including delays
Kybernetika, Tome 37 (2001) no. 3, pp. 345-353 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper analyzes the BIBO stability of fractional exponential delay systems which are of retarded or neutral type. Conditions ensuring stability are given first. As is the case for the classical class of delay systems these conditions can be expressed in terms of the location of the poles of the system. Then, in view of constructing robust BIBO stabilizing controllers, explicit expressions of coprime and Bézout factors of these systems are determined. Moreover, nuclearity is analyzed in a particular case.
This paper analyzes the BIBO stability of fractional exponential delay systems which are of retarded or neutral type. Conditions ensuring stability are given first. As is the case for the classical class of delay systems these conditions can be expressed in terms of the location of the poles of the system. Then, in view of constructing robust BIBO stabilizing controllers, explicit expressions of coprime and Bézout factors of these systems are determined. Moreover, nuclearity is analyzed in a particular case.
Classification : 34A08, 34K40, 93C23, 93D15, 93D21
Keywords: delay system; BIBO stability
@article{KYB_2001_37_3_a9,
     author = {Bonnet, Catherine and Partington, Jonathan R.},
     title = {Stabilization of fractional exponential systems including delays},
     journal = {Kybernetika},
     pages = {345--353},
     year = {2001},
     volume = {37},
     number = {3},
     mrnumber = {1859090},
     zbl = {1265.93211},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a9/}
}
TY  - JOUR
AU  - Bonnet, Catherine
AU  - Partington, Jonathan R.
TI  - Stabilization of fractional exponential systems including delays
JO  - Kybernetika
PY  - 2001
SP  - 345
EP  - 353
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a9/
LA  - en
ID  - KYB_2001_37_3_a9
ER  - 
%0 Journal Article
%A Bonnet, Catherine
%A Partington, Jonathan R.
%T Stabilization of fractional exponential systems including delays
%J Kybernetika
%D 2001
%P 345-353
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a9/
%G en
%F KYB_2001_37_3_a9
Bonnet, Catherine; Partington, Jonathan R. Stabilization of fractional exponential systems including delays. Kybernetika, Tome 37 (2001) no. 3, pp. 345-353. http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a9/

[1] Bonnet C., Partington J. R.: Bézout factors and ${L}^1$-optimal controllers for delay systems using a two-parameter compensator scheme. IEEE Trans. Automat. Control 44 (1999), 1512–1521 | DOI | MR

[2] Bonnet C., Partington J. R.: Analysis of fractional delay systems of retarded and neutral type. Preprint 2000 | MR | Zbl

[3] Bonnet C., Partington J. R.: Coprime factorizations and stability of fractional differential systems. Systems Control Lett. 41 (2000), 167–174 | DOI | MR | Zbl

[4] Curtain R. F., Zwart H. J.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer–Verlag, Berlin 1995 | MR | Zbl

[5] Glover K., Curtain R. F., Partington J. R.: Realization and approximation of linear infinite dimensional systems with error bounds. SIAM J. Control Optim. 26 (1988), 863–898 | DOI | MR

[6] Gripenberg G., Londen S. O., Staffans O.: Volterra Integral and Functional Equations. Cambridge University Press, Cambridge, U.K. 1990 | MR | Zbl

[7] Hille E., Phillips R. S.: Functional analysis and semi-groups. American Mathematical Society, Providence, R. I., 1957 | MR | Zbl

[8] Hotzel R.: Some stability conditions for fractional delay systems. J. Math. Systems, Estimation, and Control 8 (1998), 1–19 | MR | Zbl

[9] Loiseau J.-J., Mounier H.: Stabilisation de l’équation de la chaleur commandée en flux. Systèmes Différentiels Fractionnaires, Modèles, Méthodes et Applications. ESAIM Proceedings 5 (1998), 131–144 | MR | Zbl

[10] Matignon D.: Représentations en variables d’état de modèles de guides d’ondes avec dérivation fractionnaire. Thèse de doctorat, Univ. Paris XI, 1994

[11] Partington J. R.: An Introduction to Hankel Operators. Cambridge University Press, Cambridge, U.K. 1988 | MR | Zbl

[12] Weber E.: Linear Transient Analysis. Volume II. Wiley, New York 1956 | MR | Zbl