Keywords: time-delay system; feedback; spectrum; right unimodular transformations; Invariant factors assignment; spectral controllability; Bezout ring; Volterra equation
@article{KYB_2001_37_3_a4,
author = {Loiseau, Jean Jacques},
title = {Invariant factors assignment for a class of time-delay systems},
journal = {Kybernetika},
pages = {265--275},
year = {2001},
volume = {37},
number = {3},
mrnumber = {1859085},
zbl = {1265.93062},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a4/}
}
Loiseau, Jean Jacques. Invariant factors assignment for a class of time-delay systems. Kybernetika, Tome 37 (2001) no. 3, pp. 265-275. http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a4/
[1] Brethé D.: Contribution à l’étude de la stabilisation des systèmes linéaires à retards. Thèse de Doctorat, École Centrale de Nantes et Université de Nantes, 1997
[2] Brethé D., Loiseau J. J.: An effective algorithm for finite spectrum assignment of single-input systems with delays. Math. Comput. Simulation 45 (1998), 339–348 | DOI | MR | Zbl
[3] Eising R.: Realization and stabilization of 2-D systems. IEEE Trans. Automat. Control 23 (1978), 793–799 | DOI | MR | Zbl
[4] Glüsing–Lüerßen H.: A behavioral approach to delay-differential systems. SIAM J. Control Optim. 35 (1997), 480–499 | DOI | MR | Zbl
[5] Habets L.: Algebraic and Computational Aspects of Time–delay Systems. Ph. D. Thesis, Eindhoven 1994 | MR | Zbl
[6] Kailath T.: Linear Systems. Prentice Hall, Englewood Cliffs, N. J. 1980 | MR | Zbl
[7] Kamen E. W.: On an algebraic theory of systems defined by convolution operators. Math. Systems Theory 9 (1974), 57–74 | DOI | MR
[8] Kamen E. W., Khargonekar P. P., Tannenbaum A.: Proper stable Bezout factorizations and feedback control of linear time-delay systems. Internat. J. Control 43 (1986), 837–857 | DOI | MR | Zbl
[9] Kaplansky I.: Elementary divisors and modules. Trans. American Mathematical Society 66 (1949), 464–491 | DOI | MR | Zbl
[10] Kučera V.: Analysis and Design of Discrete Linear Control Systems. Prentice–Hall, London, and Academia, Prague 1991 | MR | Zbl
[11] Leborgne D.: Calcul différentiel complexe. Presses Universitaires de France, Paris, 1991 | MR | Zbl
[12] Loiseau J. J.: Algebraic tools for the control and stabilization of time–delay systems. In: Proc. 1st IFAC Workshop on Linear Time Delay Systems, Grenoble 1998, pp. 235–249
[13] Manitius A. Z., Olbrot A. W.: Finite spectrum assignment problem for systems with delays. IEEE Trans. Automat. Control 35 (1979), 541–553 | DOI | MR | Zbl
[14] Morf M., Lévy B. C., Kung S.-Y.: New results in 2-D systems theory. Part I: 2-D polynomial matrices, factorizations, and coprimeness. Proc. IEEE 65 (1977), 861–872
[15] Olbrot A. W.: Stabilizability, detectability and spectrum assignment for linear systems with general time delays. IEEE Trans. Automat. Control 23 (1978), 887–890 | DOI | MR
[16] Rosenbrock H. H.: State–space and Multivariable Theory. Wiley, New York 1970 | MR | Zbl
[17] Assche V. Van, Dambrine M., Lafay J.-F., Richard J.-P.: Some problems arising in the implementation of distributed–delay control laws. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
[18] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays. IEEE Trans. Automat. Control 31 (1986), 543–550 | DOI | MR | Zbl