On robust stability of neutral systems
Kybernetika, Tome 37 (2001) no. 3, pp. 253-263 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper focuses on the problem of uniform asymptotic stability of a class of linear neutral systems including some constant delays and time-varying cone-bounded nonlinearities. Sufficient stability conditions are derived by taking into account the weighting factors describing the nonlinearities. The proposed results are applied to the stability analysis of a class of lossless transmission line models.
This paper focuses on the problem of uniform asymptotic stability of a class of linear neutral systems including some constant delays and time-varying cone-bounded nonlinearities. Sufficient stability conditions are derived by taking into account the weighting factors describing the nonlinearities. The proposed results are applied to the stability analysis of a class of lossless transmission line models.
Classification : 34K20, 34K35, 34K40, 93C05, 93C23, 93D09, 93D20
Keywords: asymptotic stability; linear neutral system
@article{KYB_2001_37_3_a3,
     author = {Niculescu, Silviu-Iulian},
     title = {On robust stability of neutral systems},
     journal = {Kybernetika},
     pages = {253--263},
     year = {2001},
     volume = {37},
     number = {3},
     mrnumber = {1859084},
     zbl = {1265.93207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a3/}
}
TY  - JOUR
AU  - Niculescu, Silviu-Iulian
TI  - On robust stability of neutral systems
JO  - Kybernetika
PY  - 2001
SP  - 253
EP  - 263
VL  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a3/
LA  - en
ID  - KYB_2001_37_3_a3
ER  - 
%0 Journal Article
%A Niculescu, Silviu-Iulian
%T On robust stability of neutral systems
%J Kybernetika
%D 2001
%P 253-263
%V 37
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a3/
%G en
%F KYB_2001_37_3_a3
Niculescu, Silviu-Iulian. On robust stability of neutral systems. Kybernetika, Tome 37 (2001) no. 3, pp. 253-263. http://geodesic.mathdoc.fr/item/KYB_2001_37_3_a3/

[1] Abolinia V. E., Myshkis A. D.: Mixed problem for an almost linear hyperbolic system in the plane (in Russian). Mat. Sb. 12 (1960), 423–442

[2] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear matrix inequalities in system and control theory. SIAM Stud. Appl. Math. 15 (1994) | MR | Zbl

[3] Brayton R. K.: Nonlinear oscillations in a distributed network. Quart. Appl. Math. 24 (1976), 289–301

[4] Brayton R. K., Miranker W. L.: Oscillations in a distributed network. Arch. Rational Mech. Anal. 17 (1964), 358–376 | MR

[5] Chen J.: On computing the maximal delay intervals for stability of linear delay systems. IEEE Trans. Automat. Control 40 (1995), 1087–1093 | DOI | MR | Zbl

[6] Cooke K. L., Krumme D. W.: Differential-difference equations and nonlinear partial-boundary value problems for linear hyperbolic partial differential equations. J. Math. Anal. Appl. 24 (1968), 372–387 | DOI | MR

[7] Ghaoui L. El, Niculescu S.-I.: Robust decision problems in engineering: An LMI approach. In: Advances in Linear Matrix Inequality Method in Control, SIAM, Philadelphia, 1999 | MR

[8] Els’golts’ L. E., Norkin S. B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments (Math. Sci. Engrg. 105). Academic Press, New York 1973 | MR

[9] Halanay A., Răsvan, Vl.: Stability radii for some propagation models. IMA J. Math. Control Inform. 14 (1997) 95–107 | DOI | MR | Zbl

[10] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations (Appl. Math. Sci. 99). Springer–Verlag, New York 1993 | MR

[11] Hale J. K., Infante E. F., Tseng F. S. P.: Stability in linear delay equations. J. Math. Anal. Appl. 105 (1985), 533–555 | DOI | MR

[12] Kolmanovskii V. B., Myshkis A.: Applied Theory of Functional Differential Equations. Kluwer, Dordrecht 1992 | MR

[13] Lakshmikantam V., Leela S.: Differential and integral inequalities. Volume II. Academic Press, New York 1969

[14] Malek–Zavarei M., Jamshidi M.: Time Delay Systems: Analysis, Optimization and Applications (Systems and Control Series 9). North–Holland, Amsterdam 1987 | MR

[15] Niculescu S.-I.: Time-delay Systems. Qualitative Aspects on Stability and Stabilization (in French). Diderot Eds. Paris, ‘Nouveaux Essais’ Series, Paris 1997 | Zbl

[16] Niculescu S.-I., Brogliato B.: On force measurements time-delays in control of constrained manipulators. In: Proc. IFAC on System Structure and Control, Nantes 1995, pp. 266–271

[17] Niculescu S.-I., Verriest E. I., Dugard, L., Dion J.-M.: Stability and robust stability of time-delay systems: A guided tour. In: Stability and Control of Time-delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes on Control and Information Sciences 228), Springer–Verlag, London 1998 | MR | Zbl

[18] Răsvan, Vl.: Absolute Stability of Time Lag Control Systems (in Romanian). Ed. Academiei, Bucharest 1975 (Russian revised edition by Nauka, Moscow, 1983) | MR

[19] Răsvan, Vl.: Dynamical systems with lossless propagation and neutral functional differential equations. In: Proc. MTNS’98, Padoue 1998, pp. 527–531

[20] Slemrod M., Infante E. F.: Asymptotic stability criteria for linear systems of differential difference equations of neutral type and their discrete analogues. J. Math. Anal. Appl. 38 (1972), 399–415 | DOI | MR

[21] Verriest E. I., Fan M. K. H., Kullstam J.: Frequency domain robust stability criteria for linear delay systems. In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio 1993, pp. 3473–3478

[22] Verriest E. I.: Riccati type conditions for robust stability of delay systems (preprint). Presented at MTNS’96, St. Louis 1996

[23] Verriest E. I.: Robust stability of time-varying systems with unknown bounded delays. In: Proc. 33rd IEEE Conference on Decision and Control, Lake Buena Vista 1994, pp. 417–422

[24] Verriest E. I., Niculescu S.-I.: Delay-independent stability of linear neutral systems: A Riccati equation approach. In: Stability and Control of Time-delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes on Control and Information Sciences 228), Springer–Verlag, London 1998 | MR | Zbl