Keywords: output feedback controller; LMI based algorithm
@article{KYB_2001_37_2_a7,
author = {Vesel\'y, Vojtech},
title = {Static output feedback controller design},
journal = {Kybernetika},
pages = {205--221},
year = {2001},
volume = {37},
number = {2},
mrnumber = {1839228},
zbl = {1265.93204},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a7/}
}
Veselý, Vojtech. Static output feedback controller design. Kybernetika, Tome 37 (2001) no. 2, pp. 205-221. http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a7/
[1] Benton I. E., Smith D.: A non iterative LMI based algorithm for robust static output feedback stabilization. Internat. J. Control 72 (1999), 14, 1322–1330 | DOI | MR | Zbl
[2] Boyd S., Ghaoui L. El, Feron E., Balakrishnam V.: Linear matrix inequalities in system and control theory. SIAM 15 (1994), Philadelphia | MR
[3] Blondel V., Gevers M., Lindquist A.: Survey on the state of systems and control. European J. Control 1 (1995), 5, 2–23 | DOI | Zbl
[4] Ghaoui L. El, Balakrishnan V.: Synthesis of fixed structure controllers via numerical optimization. In: Proc. of the 33rd Conference on Decision and Control, Lake Buena Vista 1994, pp. 2678–2683
[5] Geromel J. C., Peres P. L. D.: Decentralized load-frequency control. Proc. IEE–D 132 (1985), 225–230
[6] Goh K. C., Safonov M. G., Ly J. H.: Robust synthesis via bilinear matrix inequalities. Internat. J. Robust and Nonlinear Control 6 (1996), 1079–1095 | DOI | MR | Zbl
[7] Goh K. G., Safonov M. G., Papavassilopoulos G. P.: Global optimization for the biaffine matrix inequality problem. J. Global Optimization 7 (1995), 365–380 | DOI | MR | Zbl
[8] Iwasaki T., Skelton R. L., Geromel J. G.: Linear quadratic suboptimal control with static output feedback. Systems Control Lett. 23 (1994), 421–430 | DOI | MR | Zbl
[9] Iwasaki T., Skelton R. E.: All controllers for the general $H_{\infty }$ control problem: LMI existence conditions and state space formulas. Automatica 30 (1994), 8, 1307–1314 | MR
[10] Kose I. E., Jabbari F.: Robust control of linear systems with real parametric uncertainty. Automatica 35 (1999), 679–687 | DOI | MR | Zbl
[11] Kučera V., deSouza C. E.: A necessary and sufficient condition for output feedback stabilizability. Automatica 31 (1995), 9, 1357–1359 | DOI | MR
[12] Lankaster P.: Theory of Matrices. Academic Press, New York – London 1969 | MR
[13] Yu, Li, Chu, Jian: An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica 35 (1999), 1155–1159 | DOI | MR | Zbl
[14] Rosinová D., Veselý V., Kučera V.: A necessary and sufficient condition for output feedback stabilizability of linear discrete-time systems. In: IFAC Conference Control System Design, Bratislava 2000, pp. 164–167
[15] Safonov M. G., Goh K. G., Ly J.: Control system synthesis via bilinear matrix inequalities. In: Proc. American Control Conf., Baltimore 1994, IEEE Press, New York, pp. 1–5
[16] Syrmos V. L., Abdalah C. T., Dorato P., Grigoriadis K.: Static output feedback – A survey. Automatica 33 (1997), 2, 125–137 | DOI | MR
[17] Toker O., Özbay H.: On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback. In: Proc. ACC 1995, pp. 2525–2526
[18] Gao, Yong-Yan, Sun, You-Xian: Static output feedback simultaneous stabilization: LMI approach. Internat. J. Control 70 (1998), 5, 803–814 | DOI | MR