Static output feedback controller design
Kybernetika, Tome 37 (2001) no. 2, pp. 205-221 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback gain matrix, including a decentralized one, can be prescribed by the designer. In this way the decentralized output feedback controller can be designed.
In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback gain matrix, including a decentralized one, can be prescribed by the designer. In this way the decentralized output feedback controller can be designed.
Classification : 93B51, 93B52, 93D15
Keywords: output feedback controller; LMI based algorithm
@article{KYB_2001_37_2_a7,
     author = {Vesel\'y, Vojtech},
     title = {Static output feedback controller design},
     journal = {Kybernetika},
     pages = {205--221},
     year = {2001},
     volume = {37},
     number = {2},
     mrnumber = {1839228},
     zbl = {1265.93204},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a7/}
}
TY  - JOUR
AU  - Veselý, Vojtech
TI  - Static output feedback controller design
JO  - Kybernetika
PY  - 2001
SP  - 205
EP  - 221
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a7/
LA  - en
ID  - KYB_2001_37_2_a7
ER  - 
%0 Journal Article
%A Veselý, Vojtech
%T Static output feedback controller design
%J Kybernetika
%D 2001
%P 205-221
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a7/
%G en
%F KYB_2001_37_2_a7
Veselý, Vojtech. Static output feedback controller design. Kybernetika, Tome 37 (2001) no. 2, pp. 205-221. http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a7/

[1] Benton I. E., Smith D.: A non iterative LMI based algorithm for robust static output feedback stabilization. Internat. J. Control 72 (1999), 14, 1322–1330 | DOI | MR | Zbl

[2] Boyd S., Ghaoui L. El, Feron E., Balakrishnam V.: Linear matrix inequalities in system and control theory. SIAM 15 (1994), Philadelphia | MR

[3] Blondel V., Gevers M., Lindquist A.: Survey on the state of systems and control. European J. Control 1 (1995), 5, 2–23 | DOI | Zbl

[4] Ghaoui L. El, Balakrishnan V.: Synthesis of fixed structure controllers via numerical optimization. In: Proc. of the 33rd Conference on Decision and Control, Lake Buena Vista 1994, pp. 2678–2683

[5] Geromel J. C., Peres P. L. D.: Decentralized load-frequency control. Proc. IEE–D 132 (1985), 225–230

[6] Goh K. C., Safonov M. G., Ly J. H.: Robust synthesis via bilinear matrix inequalities. Internat. J. Robust and Nonlinear Control 6 (1996), 1079–1095 | DOI | MR | Zbl

[7] Goh K. G., Safonov M. G., Papavassilopoulos G. P.: Global optimization for the biaffine matrix inequality problem. J. Global Optimization 7 (1995), 365–380 | DOI | MR | Zbl

[8] Iwasaki T., Skelton R. L., Geromel J. G.: Linear quadratic suboptimal control with static output feedback. Systems Control Lett. 23 (1994), 421–430 | DOI | MR | Zbl

[9] Iwasaki T., Skelton R. E.: All controllers for the general $H_{\infty }$ control problem: LMI existence conditions and state space formulas. Automatica 30 (1994), 8, 1307–1314 | MR

[10] Kose I. E., Jabbari F.: Robust control of linear systems with real parametric uncertainty. Automatica 35 (1999), 679–687 | DOI | MR | Zbl

[11] Kučera V., deSouza C. E.: A necessary and sufficient condition for output feedback stabilizability. Automatica 31 (1995), 9, 1357–1359 | DOI | MR

[12] Lankaster P.: Theory of Matrices. Academic Press, New York – London 1969 | MR

[13] Yu, Li, Chu, Jian: An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica 35 (1999), 1155–1159 | DOI | MR | Zbl

[14] Rosinová D., Veselý V., Kučera V.: A necessary and sufficient condition for output feedback stabilizability of linear discrete-time systems. In: IFAC Conference Control System Design, Bratislava 2000, pp. 164–167

[15] Safonov M. G., Goh K. G., Ly J.: Control system synthesis via bilinear matrix inequalities. In: Proc. American Control Conf., Baltimore 1994, IEEE Press, New York, pp. 1–5

[16] Syrmos V. L., Abdalah C. T., Dorato P., Grigoriadis K.: Static output feedback – A survey. Automatica 33 (1997), 2, 125–137 | DOI | MR

[17] Toker O., Özbay H.: On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback. In: Proc. ACC 1995, pp. 2525–2526

[18] Gao, Yong-Yan, Sun, You-Xian: Static output feedback simultaneous stabilization: LMI approach. Internat. J. Control 70 (1998), 5, 803–814 | DOI | MR