Keywords: initial-boundary-value problem; parallel virtual machine (PVM)
@article{KYB_2001_37_2_a5,
author = {Purcz, Pavol},
title = {Parallel algorithm for spatially one-and two-dimensional initial-boundary-value problem for a parabolic equation},
journal = {Kybernetika},
pages = {171--181},
year = {2001},
volume = {37},
number = {2},
mrnumber = {1839227},
zbl = {1265.68355},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a5/}
}
Purcz, Pavol. Parallel algorithm for spatially one-and two-dimensional initial-boundary-value problem for a parabolic equation. Kybernetika, Tome 37 (2001) no. 2, pp. 171-181. http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a5/
[1] Burrage K.: Parallel methods for initial value problems. Appl. Numer. Math. 11 (1993), 5–25 | DOI | MR | Zbl
[2] Crank J., Nicolson P.: A practical method for numerical evaluation of solutions of PDEs of the heat-conduction type. Proc. Camb. Phil. Soc. 43 (1947), 60–67 | DOI | MR
[3] Freeman T. L., Phillips C.: Parallel Numerical Algorithms. Prentice Hall, Englewood Cliffs, N.J. 1992 | MR | Zbl
[4] Kogge P. M.: Parallel solution of recurrence problems. IBM J. Res. Develop. 2 (1974), 18, 138–148 | DOI | MR | Zbl
[5] Ortega J. M., Voigt R. G.: Solution of PDE on Vector and Parallel Computers. SIAM, Philadelphia, 1985 | MR
[6] Pavluš M.: Schwarz algorithm for solution of a quasiparabolic equation. Vestnik Moskov. Univ. 4 (1992), 15, 27–35 | MR
[7] Peaceman D. W., Rachford H. H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3 (1955), 28–41 | DOI | MR | Zbl
[8] Smith G. D.: Numerical Solution of PDE. Finite Difference Methods. Second edition. Clarendon Press, Oxford 1978 | MR
[9] Tyrtyshnikov E. E.: Parallelization of some numerical methods. In: Numerical Solution of Partial Differential Equation, Košice 1992
[10] Vajteršic M.: Algorithms for Elliptic Problems. Efficient Sequential and Parallel Solvers. VEDA, Bratislava 1988 | MR | Zbl