Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers
Kybernetika, Tome 37 (2001) no. 2, pp. 127-145 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper the entropy of $L$$R$ fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of $L$$R$ fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of $T_M$–sums and $T_M$–products of $L$$R$ fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the computation of membership functions of corresponding sums or products. Moreover, the results for some other $t$-norm–based sums and products are derived. Several examples are included.
In the paper the entropy of $L$$R$ fuzzy numbers is studied. It is shown that for a given norm function, the computation of the entropy of $L$$R$ fuzzy numbers reduces to using a simple formula which depends only on the spreads and shape functions of incoming numbers. In detail the entropy of $T_M$–sums and $T_M$–products of $L$$R$ fuzzy numbers is investigated. It is shown that the resulting entropy can be computed only by means of the entropy of incoming fuzzy numbers or by means of their parameters without the computation of membership functions of corresponding sums or products. Moreover, the results for some other $t$-norm–based sums and products are derived. Several examples are included.
Classification : 03B52, 03E72, 26E50, 94A17, 94D05
Keywords: entropy; $L$-$R$ fuzzy numbers
@article{KYB_2001_37_2_a1,
     author = {Koles\'arov\'a, Anna and Vivona, Doretta},
     title = {Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers},
     journal = {Kybernetika},
     pages = {127--145},
     year = {2001},
     volume = {37},
     number = {2},
     mrnumber = {1839223},
     zbl = {1265.03020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a1/}
}
TY  - JOUR
AU  - Kolesárová, Anna
AU  - Vivona, Doretta
TI  - Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers
JO  - Kybernetika
PY  - 2001
SP  - 127
EP  - 145
VL  - 37
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a1/
LA  - en
ID  - KYB_2001_37_2_a1
ER  - 
%0 Journal Article
%A Kolesárová, Anna
%A Vivona, Doretta
%T Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers
%J Kybernetika
%D 2001
%P 127-145
%V 37
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a1/
%G en
%F KYB_2001_37_2_a1
Kolesárová, Anna; Vivona, Doretta. Entropy of $T$-sums and $T$-products of $L$-$R$ fuzzy numbers. Kybernetika, Tome 37 (2001) no. 2, pp. 127-145. http://geodesic.mathdoc.fr/item/KYB_2001_37_2_a1/

[1] Alsina C., Trillas E.: Sur les mesures du degré de flou. Stochastica 3 (1979), 81–84 | MR | Zbl

[2] Batle N., Trillas E.: Entropy and fuzzy integral. J. Math. Anal. Appl. 69 (1979), 469–474 | DOI | MR | Zbl

[3] Benvenuti P., Vivona, D., Divari M.: Fuzziness measures via Sugeno’s integral. In: Fuzzy Logic and Soft Computing (B. Bouchon–Meunier, R. R. Yager and L. A. Zadeh, eds.). Adv. Fuzzy Systems 4 (1995), 330–336 | MR | Zbl

[4] Benvenuti P., Vivona, D., Divari M.: Divergence and fuzziness measures. Soft Computing (2000), in press | Zbl

[5] Benvenuti P., Vivona, D., Divari M.: Order relations for fuzzy sets and entropy measure. In: New Trends in Fuzzy Systems (D. Mancini, M. Squillante, A. Ventre, eds.), World Scientific 1998, pp. 224–232

[6] Couso I., Gil P.: Measure of fuzziness of type 2 fuzzy sets. In: Proceedings IPMU’96, Granada 1996, pp. 581–584

[7] Baets B. De, Marková–Stupňanová A.: Analytical expression for the additions of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 203–213 | DOI | MR

[8] Luca A. De, Termini S.: A definition of a non probabilistic entropy in the setting of fuzzy sets theory. Inform. and Control 20 (1972), 301–312 | DOI | MR

[9] Dubois D., Prade H.: Additions of interactive fuzzy numbers. IEEE Trans. Automat. Control 26 (1981), 926–936 | DOI | MR

[10] Dubois D., Kerre E. E., Mesiar, R., Prade H.: Fuzzy interval analysis. In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 483–582 | MR | Zbl

[11] Ebanks B. R.: On measures of fuzziness and their representations. J. Math. Anal. Appl. 94 (1983), 24–37 | DOI | MR | Zbl

[12] Hong D. H., Hwang, Ch.: Upper bound of $T$–sums of $L$–$R$ fuzzy numbers. In: Proceedings IPMU’96, Granada 1996, pp. 347–353

[13] Kaufmann A.: Introduction to the Theory of Fuzzy Subsets: Volume 1. Academic Press, New York 1975 | MR

[14] Klement E. P., Mesiar R.: Triangular norms. Tatra Mountains Math. Publ. 13 (1997), 169–194 | MR | Zbl

[15] Klement E. P., Mesiar, R., Pap E.: Quasi and pseudo–inverses of monotone functions, and the constructions of $t$-norms. Fuzzy Sets and Systems 104 (1999), 3–13 | MR

[16] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 | MR | Zbl

[17] Knopfmacher J.: On measures of fuzziness. J. Math. Anal. Appl. 49 (1975), 529–534 | DOI | MR | Zbl

[18] Kolesárová A.: Triangular norm-based addition of linear fuzzy numbers. Tatra Mountains Math. Publ. 6 (1995), 75–81 | MR | Zbl

[19] Kolesárová A.: Similarity preserving $t$-norm-based additions of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 215–229 | DOI | MR | Zbl

[20] Kolesárová A.: Triangular norm-based additions preserving linearity of linear fuzzy intervals. Mathware and Soft Computing 5 (1998), 91–98 | MR

[21] Loo S. G.: Measures of fuzziness. Cybernetica 20 (1997), 201–210

[22] Mareš M.: Computation over Fuzzy Quantities. CRC Press, Boca Raton 1994 | MR | Zbl

[23] Marková–Stupňanová A.: $T$–sums of $L$–$R$ fuzzy numbers. Fuzzy Sets and Systems 85 (1996), 379–384 | DOI

[24] Mesiar R.: Computation over $L$–$R$ fuzzy numbers. In: Proceedings CIFT’95, Trento 1995, pp. 165–176

[25] Mesiar R.: $L$–$R$ fuzzy numbers. In: Proceedings IPMU’96, Granada 1996, pp. 337–342 | Zbl

[26] Mesiar R.: A note on the $T$–sum of $L$–$R$ fuzzy numbers. Fuzzy Sets and Systems 79 (1996), 259–261 | DOI | MR

[27] Mesiar R.: Shape preserving additions of fuzzy intervals. Fuzzy Sets and Systems 86 (1997), 73–78 | DOI | MR | Zbl

[28] Mesiar R.: Triangular norm-based additions of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 231–237 | DOI | MR

[29] Nguyen H. T.: A note on a extension principle for fuzzy sets. J. Math. Anal. Appl. 64 (1978), 369–380 | DOI | MR

[30] Pal N. R., Bezdek J. C.: Measuring fuzzy uncertainty. IEEE Trans. Fuzzy Syst. 2 (1994), 107–118 | DOI

[31] Pal N. R., Bezdek J. C.: Quantifying different facets of fuzzy uncertainty. In: Fundamentals of Fuzzy Sets (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Dordrecht 2000, pp. 459–480 | MR | Zbl

[32] Sander W.: On measures of fuzziness. Fuzzy Sets and Systems 29 (1989), 49–55 | DOI | MR

[33] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, Amsterdam 1983 | MR | Zbl

[34] Trillas E., Riera T.: Entropies of finite fuzzy sets. Inform. Sci. 15 (1978), 158–168 | DOI | MR

[35] Wang W. J., Chiu, Ch. H.: The entropy of fuzzy numbers with arithmetical operations. Fuzzy Sets and Systems 111 (2000), 357–366 | MR

[36] Vivona D.: Mathematical aspects of the theory of measures of fuzziness. Mathware and Soft Computing 3 (1996), 211–224 | MR | Zbl

[37] Yager R. R.: On measures of fuzziness and negations, Part I: membership in the unit interval. Internat. J. Gen. Systems 5 (1979), 221–229 | DOI | MR

[38] Zadeh L. A.: Probability measures of fuzzy events. J. Math. Anal. Appl. 23 (1968), 421–427 | DOI | MR | Zbl