Computing the distribution of a linear combination of inverted gamma variables
Kybernetika, Tome 37 (2001) no. 1, pp. 79-90 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A formula for evaluation of the distribution of a linear combination of independent inverted gamma random variables by one-dimensional numerical integration is presented. The formula is direct application of the inversion formula given by Gil–Pelaez [gil-pelaez]. This method is applied to computation of the generalized $p$-values used for exact significance testing and interval estimation of the parameter of interest in the Behrens–Fisher problem and for variance components in balanced mixed linear model.
A formula for evaluation of the distribution of a linear combination of independent inverted gamma random variables by one-dimensional numerical integration is presented. The formula is direct application of the inversion formula given by Gil–Pelaez [gil-pelaez]. This method is applied to computation of the generalized $p$-values used for exact significance testing and interval estimation of the parameter of interest in the Behrens–Fisher problem and for variance components in balanced mixed linear model.
Classification : 62E15, 62J05, 65C60, 65D30
Keywords: generalized $p$-value; inversion formula; Behrens-Fisher problem
@article{KYB_2001_37_1_a5,
     author = {Witkovsk\'y, Viktor},
     title = {Computing the distribution of a linear combination of inverted gamma variables},
     journal = {Kybernetika},
     pages = {79--90},
     year = {2001},
     volume = {37},
     number = {1},
     mrnumber = {1825758},
     zbl = {1263.62022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a5/}
}
TY  - JOUR
AU  - Witkovský, Viktor
TI  - Computing the distribution of a linear combination of inverted gamma variables
JO  - Kybernetika
PY  - 2001
SP  - 79
EP  - 90
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a5/
LA  - en
ID  - KYB_2001_37_1_a5
ER  - 
%0 Journal Article
%A Witkovský, Viktor
%T Computing the distribution of a linear combination of inverted gamma variables
%J Kybernetika
%D 2001
%P 79-90
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a5/
%G en
%F KYB_2001_37_1_a5
Witkovský, Viktor. Computing the distribution of a linear combination of inverted gamma variables. Kybernetika, Tome 37 (2001) no. 1, pp. 79-90. http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a5/

[1] Abramowitz M., Stegun I. A.: Handbook of Mathematical Functions. Dover, New York 1965 | Zbl

[2] Amos D. E.: A portable package for bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Software 12 (1986), 265–273 | DOI | MR | Zbl

[3] Davies R. B.: Numerical inversion of a characteristic function. Biometrika 60 (1973), 415–417 | DOI | MR | Zbl

[4] Gil–Pelaez J.: Note on the inversion theorem. Biometrika 38 (1951), 481–482 | DOI | MR | Zbl

[5] Imhof J. P.: Computing the distribution of quadratic forms in normal variables. Biometrika 48 (1961), 419–426 | DOI | MR | Zbl

[6] Khuri A. I., Mathew, T., Sinha B. K.: Statistical Tests for Mixed Linear Models. Wiley, New York 1998 | MR | Zbl

[7] Prudnikov A. P., Brychkov Y. A., Marichev O. I.: Integraly i Rjady. (Integrals and Series). Nauka, Moscow 1981 | MR

[8] Tsui K. W., Weerahandi S.: Generalized $p$ values in significance testing of hypotheses in the presence of nuisance parameters. J. Amer. Statist. Assoc. 84 (1989), 602–607 | MR

[9] Waller L. A., Turnbull B. W., Hardin J. M.: Obtaining distribution functions by numerical inversion of characteristic functions with applications. Amer. Statist. 49 (1995), 4, 346–350

[10] Weerahandi S.: Testing variance components in mixed models with generalized $p$ values. J. Amer. Statist. Assoc. 86 (1991), 151–153

[11] Weerahandi S.: Exact Statistical Methods for Data Analysis. Springer–Verlag, New York 1995 | MR | Zbl

[12] Witkovský V.: On the exact computation of the density and of the quantiles of linear combinations of $t$ and $F$ random variables. J. Statist. Plann. Inference 94 (2001), 1, 1–13 | DOI | MR | Zbl

[13] Zhou L., Mathew T.: Some tests for variance components using generalized $P$-values. Technometrics 36 (1994), 394–402 | MR | Zbl