Keywords: violation of normality assumptions
@article{KYB_2001_37_1_a4,
author = {Rubl{\'\i}k, Franti\v{s}ek},
title = {Tests of some hypotheses on characteristic roots of covariance matrices not requiring normality assumptions},
journal = {Kybernetika},
pages = {61--78},
year = {2001},
volume = {37},
number = {1},
mrnumber = {1825757},
zbl = {1263.62096},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a4/}
}
Rublík, František. Tests of some hypotheses on characteristic roots of covariance matrices not requiring normality assumptions. Kybernetika, Tome 37 (2001) no. 1, pp. 61-78. http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a4/
[1] Davis A. W.: Asymptotic theory for principal components analysis: non-normal case. Austral. J. Statist. 19 (1977), 206–212 | DOI | MR
[2] Kollo T., Neudecker H.: Asymptotics of eigenvalues and unit-length eigenvectors of sample variance and correlation matrices. J. Multivariate Anal. 47 (1993), 283–300 | DOI | MR | Zbl
[3] Magnus J. R., Neudecker H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, New York 1988 | MR | Zbl
[4] Mardia K. V., Kent J. T., Bibby J. M.: Multivariate Analysis. Academic Press, New York 1979 | MR | Zbl
[5] Okamoto M.: Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist. 1 (1973), 763–765 | DOI | MR | Zbl
[6] Rao C. R., Mitra S. K.: Generalized Inverse of Matrices and its Applications. Wiley, New York 1971 | MR | Zbl
[7] Rublík F.: On consistency of the MLE. Kybernetika 31 (1995), 45–64 | MR
[8] Ruymgaart F. H., Yang S.: Some applications of Watson’s perturbation approach to random matrices. J. Multivariate Anal. 60 (1997), 48–60 | DOI | MR | Zbl
[9] Schott J. R.: Some tests for common principal component subspaces in several groups. Biometrika 78 (1991), 771–777 | DOI | MR | Zbl
[10] Schott J. R.: Asymptotics of eigenprojections of correlation matrices with some applications in principal components analysis. Biometrika 84 (1997), 327–337 | DOI | MR | Zbl
[11] Tyler D. E.: The asymptotic distribution of principal component roots under local alternatives to multiple roots. Ann. Statist. 11 (1983), 1232–1242 | MR | Zbl
[12] Waternaux C. M.: Asymptotic distribution of the sample roots for a nonnormal population. Biometrika 63 (1976), 639–645 | DOI | MR | Zbl