Solution set in a special case of generalized Nash equilibrium games
Kybernetika, Tome 37 (2001) no. 1, pp. 21-37 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A special class of generalized Nash equilibrium problems is studied. Both variational and quasi-variational inequalities are used to derive some results concerning the structure of the sets of equilibria. These results are applied to the Cournot oligopoly problem.
A special class of generalized Nash equilibrium problems is studied. Both variational and quasi-variational inequalities are used to derive some results concerning the structure of the sets of equilibria. These results are applied to the Cournot oligopoly problem.
Classification : 49J40, 90C30, 90C46, 91A10
Keywords: generalized Nash equilibrium problem; Cournot oligopoly problem
@article{KYB_2001_37_1_a1,
     author = {Cach, Josef},
     title = {Solution set in a special case of generalized {Nash} equilibrium games},
     journal = {Kybernetika},
     pages = {21--37},
     year = {2001},
     volume = {37},
     number = {1},
     mrnumber = {1825755},
     zbl = {1265.91007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a1/}
}
TY  - JOUR
AU  - Cach, Josef
TI  - Solution set in a special case of generalized Nash equilibrium games
JO  - Kybernetika
PY  - 2001
SP  - 21
EP  - 37
VL  - 37
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a1/
LA  - en
ID  - KYB_2001_37_1_a1
ER  - 
%0 Journal Article
%A Cach, Josef
%T Solution set in a special case of generalized Nash equilibrium games
%J Kybernetika
%D 2001
%P 21-37
%V 37
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a1/
%G en
%F KYB_2001_37_1_a1
Cach, Josef. Solution set in a special case of generalized Nash equilibrium games. Kybernetika, Tome 37 (2001) no. 1, pp. 21-37. http://geodesic.mathdoc.fr/item/KYB_2001_37_1_a1/

[1] Arrow K., Debreu G.: Existence of equilibrium for competitive economy. Econometrica 22 (1954), 265–290 | DOI | MR

[2] Baiocchi C., Capelo A.: Variational and Quasi-Variational Inequalities. Wiley, New York 1984 | MR

[3] Cach J.: A Nonsmooth Approach to the Computation of Equilibria (in Czech). Diploma Thesis, Charles University, Prague 1996

[4] Chan D., Pang J.-S.: The generalized quasi-variational problem. Math. Oper. Res. 7 (1982), 211–222 | DOI | MR

[5] Debreu G.: A social equilibrium existence theorem. Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 886–893 | DOI | MR | Zbl

[6] Harker P. T.: A variational inequality approach for the determination of oligopolistic market equilibrium. Math. Programming 30 (1984), 105–111 | DOI | MR | Zbl

[7] Harker P. T.: Generalized Nash games and quasi-variational inequalities. European J. Oper. Res. 54 (1991), 81–94 | DOI | Zbl

[8] Harker P. T., Pang J.-S.: Finite-dimensional variational inequalities and complementarity problems: a survey of theory, algorithms and applications. Math. Programming 60 (1990), 161–220 | DOI | MR

[9] Ichiishi T.: Game Theory for Economic Analysis. Academic Press, New York 1983 | MR | Zbl

[10] Mosco V.: Implicit variational problems and quasi-variational inequalities. In: Nonlinear Operations and the Calculus of Variations – Summer School held in Bruxelles on 8–19 September 1975 (J. P. Gossez et al, ed., Lecture Notes in Mathematics 543.) Springer Verlag, Berlin 1976, pp. 83–156 | MR

[11] Murphy F. H., Sherali H. D., Soyster A. L.: A mathematical programming approach for determining oligopolistic market equilibrium. Math. Programming 24 (1982), 92–106 | DOI | MR | Zbl

[12] Nash J.: Non-cooperative games. Ann. of Math. 54 (1951), 286–295 | DOI | MR | Zbl

[13] Outrata J. V., Kočvara M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results. Kluwer, Dordrecht 1998 | MR | Zbl

[14] Outrata J. V., Zowe J.: A numerical approach to optimization problems with variational inequality constraints. Math. Programming 68 (1995), 105–130 | DOI | MR | Zbl

[15] Rosen J. B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (1965), 520–534 | DOI | MR | Zbl