@article{KYB_2000_36_6_a4,
author = {Andrejkov\'a, Gabriela},
title = {The similarity of two strings of fuzzy sets},
journal = {Kybernetika},
pages = {671--687},
year = {2000},
volume = {36},
number = {6},
mrnumber = {1805814},
zbl = {1249.03089},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_6_a4/}
}
Andrejková, Gabriela. The similarity of two strings of fuzzy sets. Kybernetika, Tome 36 (2000) no. 6, pp. 671-687. http://geodesic.mathdoc.fr/item/KYB_2000_36_6_a4/
[1] Andrejková G.: The longest restricted common subsequence problem. In: Proc. Prague Stringology Club Workshop’98, Prague 1998, pp. 14–25
[2] Andrejková G.: The set closest common subsequence problem. In: Proceedings of 4th International Conference on Applied Informatics’99, Eger–Noszvaj 1999, p. 8
[3] Gottwald S.: Fuzzy Sets and Fuzzy Logic. Vieweg, Wiesbaden 1993, p. 216 | MR | Zbl
[4] Hájek P.: Mathematics of Fuzzy Logic. Kluwer, Dordrecht 1998
[5] Hirschberg D. S.: Algorithms for longest common subsequence problem. J. Assoc. Comput. Mach. 24 (1977), 664–675 | DOI | MR
[6] Hirschberg D. S., Larmore L. L.: The set LCS problem. Algorithmica 2 (1987), 91–95 | DOI | MR | Zbl
[7] Hirschberg D. S., Larmore L. L.: The set-set LCS problem. Algorithmica 4 (1989), 503–510 | DOI | MR | Zbl
[8] Kaufmann A.: Introduction to Theory of Fuzzy Subsets. Vol. 1: Fundamental Theoretical Elements. Academic Press, New York 1975 | MR
[9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 | MR | Zbl
[10] Mohanty S. P.: Shortest string containing all permutations. Discrete Math. 31 (1980), 91–95 | DOI | MR | Zbl
[11] Nakatsu N., Kombayashi, Y., Yajima S.: A longest common subsequence algorithm suitable for similar text strings. Acta Inform. 18 (1982), 171–179 | MR
[12] Zadeh L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3–28 | DOI | MR