The similarity of two strings of fuzzy sets
Kybernetika, Tome 36 (2000) no. 6, pp. 671-687 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let ${\cal A},\,{\cal B}$ be the strings of fuzzy sets over ${\chi }$, where ${\chi }$ is a finite universe of discourse. We present the algorithms for operations on fuzzy sets and the polynomial time algorithms to find the string ${\cal C}$ over ${\chi }$ which is a closest common subsequence of fuzzy sets of ${\cal A}$ and ${\cal B}$ using different operations to measure a similarity of fuzzy sets.
Let ${\cal A},\,{\cal B}$ be the strings of fuzzy sets over ${\chi }$, where ${\chi }$ is a finite universe of discourse. We present the algorithms for operations on fuzzy sets and the polynomial time algorithms to find the string ${\cal C}$ over ${\chi }$ which is a closest common subsequence of fuzzy sets of ${\cal A}$ and ${\cal B}$ using different operations to measure a similarity of fuzzy sets.
Classification : 03E72, 68W32
Keywords: fuzzy set; polynomial-time algorithms
@article{KYB_2000_36_6_a4,
     author = {Andrejkov\'a, Gabriela},
     title = {The similarity of two strings of fuzzy sets},
     journal = {Kybernetika},
     pages = {671--687},
     year = {2000},
     volume = {36},
     number = {6},
     mrnumber = {1805814},
     zbl = {1249.03089},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_6_a4/}
}
TY  - JOUR
AU  - Andrejková, Gabriela
TI  - The similarity of two strings of fuzzy sets
JO  - Kybernetika
PY  - 2000
SP  - 671
EP  - 687
VL  - 36
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_6_a4/
LA  - en
ID  - KYB_2000_36_6_a4
ER  - 
%0 Journal Article
%A Andrejková, Gabriela
%T The similarity of two strings of fuzzy sets
%J Kybernetika
%D 2000
%P 671-687
%V 36
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_6_a4/
%G en
%F KYB_2000_36_6_a4
Andrejková, Gabriela. The similarity of two strings of fuzzy sets. Kybernetika, Tome 36 (2000) no. 6, pp. 671-687. http://geodesic.mathdoc.fr/item/KYB_2000_36_6_a4/

[1] Andrejková G.: The longest restricted common subsequence problem. In: Proc. Prague Stringology Club Workshop’98, Prague 1998, pp. 14–25

[2] Andrejková G.: The set closest common subsequence problem. In: Proceedings of 4th International Conference on Applied Informatics’99, Eger–Noszvaj 1999, p. 8

[3] Gottwald S.: Fuzzy Sets and Fuzzy Logic. Vieweg, Wiesbaden 1993, p. 216 | MR | Zbl

[4] Hájek P.: Mathematics of Fuzzy Logic. Kluwer, Dordrecht 1998

[5] Hirschberg D. S.: Algorithms for longest common subsequence problem. J. Assoc. Comput. Mach. 24 (1977), 664–675 | DOI | MR

[6] Hirschberg D. S., Larmore L. L.: The set LCS problem. Algorithmica 2 (1987), 91–95 | DOI | MR | Zbl

[7] Hirschberg D. S., Larmore L. L.: The set-set LCS problem. Algorithmica 4 (1989), 503–510 | DOI | MR | Zbl

[8] Kaufmann A.: Introduction to Theory of Fuzzy Subsets. Vol. 1: Fundamental Theoretical Elements. Academic Press, New York 1975 | MR

[9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 | MR | Zbl

[10] Mohanty S. P.: Shortest string containing all permutations. Discrete Math. 31 (1980), 91–95 | DOI | MR | Zbl

[11] Nakatsu N., Kombayashi, Y., Yajima S.: A longest common subsequence algorithm suitable for similar text strings. Acta Inform. 18 (1982), 171–179 | MR

[12] Zadeh L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3–28 | DOI | MR