Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences
Kybernetika, Tome 36 (2000) no. 5, pp. 589-602 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of the paper is to present a test of goodness of fit with weigths in the classes based on weighted $\left( h,\phi \right) $-divergences. This family of divergences generalizes in some sense the previous weighted divergences studied by Frank et al [frank] and Kapur [kapur]. The weighted $\left( h,\phi \right)$-divergence between an empirical distribution and a fixed distribution is here investigated for large simple random samples, and the asymptotic distributions are shown to be either normal or equal to the distribution of a linear combination of independent chi-square variables. Some approximations to the linear combination of independent chi-square variables are presented.
The aim of the paper is to present a test of goodness of fit with weigths in the classes based on weighted $\left( h,\phi \right) $-divergences. This family of divergences generalizes in some sense the previous weighted divergences studied by Frank et al [frank] and Kapur [kapur]. The weighted $\left( h,\phi \right)$-divergence between an empirical distribution and a fixed distribution is here investigated for large simple random samples, and the asymptotic distributions are shown to be either normal or equal to the distribution of a linear combination of independent chi-square variables. Some approximations to the linear combination of independent chi-square variables are presented.
Classification : 60E05, 62B10, 62E10, 62E20, 62G10
@article{KYB_2000_36_5_a5,
     author = {Landaburu, Elena and Pardo, Leandro},
     title = {Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences},
     journal = {Kybernetika},
     pages = {589--602},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1882796},
     zbl = {1244.62065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a5/}
}
TY  - JOUR
AU  - Landaburu, Elena
AU  - Pardo, Leandro
TI  - Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences
JO  - Kybernetika
PY  - 2000
SP  - 589
EP  - 602
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a5/
LA  - en
ID  - KYB_2000_36_5_a5
ER  - 
%0 Journal Article
%A Landaburu, Elena
%A Pardo, Leandro
%T Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences
%J Kybernetika
%D 2000
%P 589-602
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a5/
%G en
%F KYB_2000_36_5_a5
Landaburu, Elena; Pardo, Leandro. Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences. Kybernetika, Tome 36 (2000) no. 5, pp. 589-602. http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a5/

[1] Csiszár I.: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publications of the Mathematical Institute of Hungarian Academy of Sciences Ser A. 8 (1963), 85–108 | MR

[2] Dik J. J., Gunst M. C. M. de: The distribution of general quadratic forms in normal variables. Statistica Neerlandica 39 (1985), 14–26 | DOI | MR | Zbl

[3] Eckler A. R.: A survey of coverage problems associated with point and area targets. Technometrics 11 (1969), 561–589 | DOI | Zbl

[4] Ferguson T. S.: A Course in Large Sample Theory. Chapman & Hall, London 1996 | MR | Zbl

[5] Frank O., Menéndez M. L., Pardo L.: Asymptotic distributions of weighted divergence between discrete distributions. Comm. Statist. – Theory Methods 27 (1998), 4, 867–885 | DOI | MR | Zbl

[6] Fraser D. A. S.: Non–parametrics Methods in Statistics. Wiley, New York 1957 | MR

[7] Guiaşu S.: Grouping data by using the weighted entropy. J. Statist. Plann. Inference 15 (1986), 63–69 | DOI | MR | Zbl

[8] Gupta S. S.: Bibliography on the multivariate normal integrals and related topics. Ann. Math. Statist. 34 (1963), 829–838 | DOI | MR

[9] Jensen D. R., Solomon H.: A Gaussian approximation to the distribution of a definite quadratic form. J. Amer. Statist. Assoc. 67 (1972), 340, 898–902 | Zbl

[10] Johnson N. L., Kotz S.: Tables of distributions of positive definite quadratic forms in central normal variables. Sankhya, Ser. B 30 (1968), 303–314 | MR

[11] Kapur J. N.: Measures of Information and their Applications. Wiley, New York 1994 | Zbl

[12] Kotz S., Johnson N. M., Boid D. W.: Series representation of quadratic forms in normal variables I. Central case. Annals Math. Statist. 38 (1967), 823–837 | DOI | MR

[13] Liese F., Vajda I.: Convex Statistical Distances. Teubner, Leipzig 1987 | MR | Zbl

[14] Longo G.: Quantitative and Qualitative Measure of Information. Springer, New York 1970 | MR

[15] Menéndez M. L., Morales D., Pardo L., Salicrú M.: Asymptotic behaviour and statistical applications of divergence measures in multinomial populations: A unified study. Statistical Papers 36 (1995), 1–29 | DOI | MR | Zbl

[16] Menéndez M. L., Morales D., Pardo L., Vajda I.: Approximations to powers of $\varphi $-disparity goodness of fit tests. Submitted

[17] Modarres R., Jernigan R. W.: Testing the equality of correlation matrices. Comm. Statist. – Theory Methods 21 (1992), 2107–2125 | DOI | MR | Zbl

[18] Rao J. N. K., Scott A. J.: The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness of fit and independence in two-way tables. J. Amer. Statist. Assoc. 76 (1981), 221–230 | DOI | MR | Zbl

[19] Solomon H.: Distribution of Quadratic Forms – Tables and Applications. Applied Mathematics and Statistics Laboratories, Technical Report 45, Stanford University, Stanford, Calif. 1960

[20] Taneja C. T.: On the mean and the variance of estimates of Kullback information and relative useful information measures. Apl. Mat. 30 (1985), 166–175 | MR | Zbl

[21] Vajda I.: Theory of Statistical Inference and Information. Kluwer Academic Publishers, Dordrecht 1989 | Zbl

[22] Zografos K., Ferentinos K., Papaioannou: $\varphi $ -divergence statistics: sampling properties and multinomial goodness of fit and divergence tests. Comm. Statist. – Theory Methods 19 (1990), 5, 1785-1802 | DOI | MR