@article{KYB_2000_36_5_a5,
author = {Landaburu, Elena and Pardo, Leandro},
title = {Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences},
journal = {Kybernetika},
pages = {589--602},
year = {2000},
volume = {36},
number = {5},
mrnumber = {1882796},
zbl = {1244.62065},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a5/}
}
Landaburu, Elena; Pardo, Leandro. Goodness of fit tests with weights in the classes based on $(h,\phi)$-divergences. Kybernetika, Tome 36 (2000) no. 5, pp. 589-602. http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a5/
[1] Csiszár I.: Eine Informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publications of the Mathematical Institute of Hungarian Academy of Sciences Ser A. 8 (1963), 85–108 | MR
[2] Dik J. J., Gunst M. C. M. de: The distribution of general quadratic forms in normal variables. Statistica Neerlandica 39 (1985), 14–26 | DOI | MR | Zbl
[3] Eckler A. R.: A survey of coverage problems associated with point and area targets. Technometrics 11 (1969), 561–589 | DOI | Zbl
[4] Ferguson T. S.: A Course in Large Sample Theory. Chapman & Hall, London 1996 | MR | Zbl
[5] Frank O., Menéndez M. L., Pardo L.: Asymptotic distributions of weighted divergence between discrete distributions. Comm. Statist. – Theory Methods 27 (1998), 4, 867–885 | DOI | MR | Zbl
[6] Fraser D. A. S.: Non–parametrics Methods in Statistics. Wiley, New York 1957 | MR
[7] Guiaşu S.: Grouping data by using the weighted entropy. J. Statist. Plann. Inference 15 (1986), 63–69 | DOI | MR | Zbl
[8] Gupta S. S.: Bibliography on the multivariate normal integrals and related topics. Ann. Math. Statist. 34 (1963), 829–838 | DOI | MR
[9] Jensen D. R., Solomon H.: A Gaussian approximation to the distribution of a definite quadratic form. J. Amer. Statist. Assoc. 67 (1972), 340, 898–902 | Zbl
[10] Johnson N. L., Kotz S.: Tables of distributions of positive definite quadratic forms in central normal variables. Sankhya, Ser. B 30 (1968), 303–314 | MR
[11] Kapur J. N.: Measures of Information and their Applications. Wiley, New York 1994 | Zbl
[12] Kotz S., Johnson N. M., Boid D. W.: Series representation of quadratic forms in normal variables I. Central case. Annals Math. Statist. 38 (1967), 823–837 | DOI | MR
[13] Liese F., Vajda I.: Convex Statistical Distances. Teubner, Leipzig 1987 | MR | Zbl
[14] Longo G.: Quantitative and Qualitative Measure of Information. Springer, New York 1970 | MR
[15] Menéndez M. L., Morales D., Pardo L., Salicrú M.: Asymptotic behaviour and statistical applications of divergence measures in multinomial populations: A unified study. Statistical Papers 36 (1995), 1–29 | DOI | MR | Zbl
[16] Menéndez M. L., Morales D., Pardo L., Vajda I.: Approximations to powers of $\varphi $-disparity goodness of fit tests. Submitted
[17] Modarres R., Jernigan R. W.: Testing the equality of correlation matrices. Comm. Statist. – Theory Methods 21 (1992), 2107–2125 | DOI | MR | Zbl
[18] Rao J. N. K., Scott A. J.: The analysis of categorical data from complex sample surveys: Chi-squared tests for goodness of fit and independence in two-way tables. J. Amer. Statist. Assoc. 76 (1981), 221–230 | DOI | MR | Zbl
[19] Solomon H.: Distribution of Quadratic Forms – Tables and Applications. Applied Mathematics and Statistics Laboratories, Technical Report 45, Stanford University, Stanford, Calif. 1960
[20] Taneja C. T.: On the mean and the variance of estimates of Kullback information and relative useful information measures. Apl. Mat. 30 (1985), 166–175 | MR | Zbl
[21] Vajda I.: Theory of Statistical Inference and Information. Kluwer Academic Publishers, Dordrecht 1989 | Zbl
[22] Zografos K., Ferentinos K., Papaioannou: $\varphi $ -divergence statistics: sampling properties and multinomial goodness of fit and divergence tests. Comm. Statist. – Theory Methods 19 (1990), 5, 1785-1802 | DOI | MR