@article{KYB_2000_36_5_a4,
author = {Gupta, Shanti S. and Liese, Friedrich},
title = {Asymptotic distribution of the conditional regret risk for selecting good exponential populations},
journal = {Kybernetika},
pages = {571--588},
year = {2000},
volume = {36},
number = {5},
mrnumber = {1882795},
zbl = {1243.62006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a4/}
}
TY - JOUR AU - Gupta, Shanti S. AU - Liese, Friedrich TI - Asymptotic distribution of the conditional regret risk for selecting good exponential populations JO - Kybernetika PY - 2000 SP - 571 EP - 588 VL - 36 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a4/ LA - en ID - KYB_2000_36_5_a4 ER -
Gupta, Shanti S.; Liese, Friedrich. Asymptotic distribution of the conditional regret risk for selecting good exponential populations. Kybernetika, Tome 36 (2000) no. 5, pp. 571-588. http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a4/
[1] Balakrishnan N., (eds.) A. P. Basu: The Exponential Distribution: Theory, Method and Applications. Gordon and Breach Publishers. Langliorne, Pennsylvania 1995 | MR
[2] Deely J. J.: Multiple Decision Procedures from Empirical Bayes Approach. Ph.D. Thesis (Mimeo. Ser. No. 45). Dept. Statist., Purdue Univ., West Lafayette, Ind. 1965 | MR
[3] Dvoretzky A., Kiefer, J., Wolfowitz J.: Asymptotic minimax character of the sample distribution functions and of the classical multinomial estimator. Ann. Math. Statist. 27 (1956), 642–669 | DOI | MR
[4] Gupta S. S., Panchapakesan S.: Subset selection procedures: review and assessment. Amer. J. Management Math. Sci. 5 (1985), 235–311 | MR | Zbl
[5] Gupta S. S., Liang T.: Empirical Bayes rules for selecting the best binomial population. In: Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.), Vol. 1. Springer–Verlag, Berlin 1986, pp. 213–224 | MR
[6] Gupta S. S., Liang T.: On empirical Bayes selection rules for sampling inspection. J. Statist. Plann. Inference 38 (1994), 43–64 | DOI | MR | Zbl
[7] Gupta S. S., Liang, T., Rau R.-B.: Empirical Bayes two stage procedures for selecting the best Bernoulli population compared with a control. In: Statistical Decision Theory and Related Topics V. (S. S. Gupta and J. O. Berger, eds.), Springer–Verlag, Berlin 1994, pp. 277–292 | MR | Zbl
[8] Gupta S. S., Liang, T., Rau R.-B.: Empirical Bayes rules for selecting the best normal population compared with a control. Statist. Decision 12 (1994), 125–147 | MR | Zbl
[10] Gupta S. S., Liang T.: Selecting good exponential populations compared with a control: nonparametric empirical Bayes approach. Sankhya, Ser. B 61 (1999), 289–304 | MR
[11] Ibragimov I. A., Has’minskii R. Z.: Statistical Estimation: Asymptotic Theory. Springer, New York 1981 | MR
[12] Johnson N. L., Kotz S., Balakrishnan N.: Continuous Univariate Distributions, Vol. 1. Second edition. Wiley, New York 1994 | MR | Zbl
[13] Jurečková J., Sen P. K.: Robust Statistical Procedures, Asymptotics and Interrelations. Wiley, New York 1996 | MR | Zbl
[14] Liese F., Vajda I.: Consistency of M-estimates in general regression models. J. Multivariate Anal. 50 (1994), 93–114 | DOI | MR | Zbl
[15] Pfanzagl J.: On measurability and consistency of minimum contrast estimators. Metrika 14 (1969), 249–272 | DOI
[16] Pollard D.: Asymptotics for least absolute deviation regression estimators. Econometric Theory 7 (1991), 186–199 | DOI | MR
[17] Robbins H.: An empirical Bayes approach to statistics. In: Proc. Third Berkeley Symp., Math. Statist. Probab. 1, Univ. of California Press 1956, pp. 157–163 | MR | Zbl
[18] Shorack G. R., Wellner J. A.: Empirical Processes with Applications to Statistics. Wiley, New York 1986 | MR | Zbl
[19] Wald A.: Note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20 (1949), 595–601 | DOI | MR | Zbl
[20] Vaart A. W. van der, Wellner J. A.: Weak Convergence and Empirical Processes (Springer Series in Statistics). Springer–Verlag, Berlin 1996 | MR