Transfer function computation for 3-D discrete systems
Kybernetika, Tome 36 (2000) no. 5, pp. 539-547 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A theoretically attractive and computationally fast algorithm is presented for the determination of the coefficients of the determinantal polynomial and the coefficients of the adjoint polynomial matrix of a given three-dimensional (3–D) state space model of Fornasini–Marchesini type. The algorithm uses the discrete Fourier transform (DFT) and can be easily implemented on a digital computer.
A theoretically attractive and computationally fast algorithm is presented for the determination of the coefficients of the determinantal polynomial and the coefficients of the adjoint polynomial matrix of a given three-dimensional (3–D) state space model of Fornasini–Marchesini type. The algorithm uses the discrete Fourier transform (DFT) and can be easily implemented on a digital computer.
Classification : 65T50, 93B40, 93C80
Keywords: 3-D discrete system; discrete Fourier transform
@article{KYB_2000_36_5_a2,
     author = {Antoniou, George E.},
     title = {Transfer function computation for {3-D} discrete systems},
     journal = {Kybernetika},
     pages = {539--547},
     year = {2000},
     volume = {36},
     number = {5},
     mrnumber = {1882793},
     zbl = {1249.93067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a2/}
}
TY  - JOUR
AU  - Antoniou, George E.
TI  - Transfer function computation for 3-D discrete systems
JO  - Kybernetika
PY  - 2000
SP  - 539
EP  - 547
VL  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a2/
LA  - en
ID  - KYB_2000_36_5_a2
ER  - 
%0 Journal Article
%A Antoniou, George E.
%T Transfer function computation for 3-D discrete systems
%J Kybernetika
%D 2000
%P 539-547
%V 36
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a2/
%G en
%F KYB_2000_36_5_a2
Antoniou, George E. Transfer function computation for 3-D discrete systems. Kybernetika, Tome 36 (2000) no. 5, pp. 539-547. http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a2/

[1] Antoniou G. E., Glentis G. O. A., Varoufakis S. J., Karras D. A.: Transfer function determination of singular systems using the DFT. IEEE Trans. Circuits and Systems CAS-36 (1989), 1140–1142 | DOI | MR

[2] Bose N. K.: Applied Multidimensional Systems. Van Nostrand, Reinhold, 1982 | MR | Zbl

[3] Fornasini E., Marchesini E.: Doubly indexed dynamical systems: state space models and structural properties. Math. Systems Theory 12 (1978), 1, 59–72 | DOI | MR | Zbl

[4] Galkowski K.: State Space Realizations on $n$-D Systems. Monograph No. 76, Wroclaw Technical University, Wroclaw 1994

[5] Kaczorek T.: Two dimensional linear systems. (Lecture Notes in Control and Informations Sciences 68.) Springer–Verlag, Berlin 1985 | MR | Zbl

[7] Luo H., Lu W.-S., Antoniou A.: New algorithms for the derivation of the transfer-function matrices of 2-D state-space discrete systems. I: Fundamental theory and applications. IEEE Trans. Circuits and Systems CAS-44 (1997), 2, 112–119 | Zbl

[8] Oppenheim A. V., Scheafer R. W.: Digital Signal Processing. Prentice–Hall, Englewood Cliffs, N. J. 1975

[9] al L. E. Paccagnella et: FFT calculation of a determinental polynomial. IEEE Trans. Automat. Control AC-21 (1976), 401 | DOI

[10] Paraskevopoulos P. N., Varoufakis S. J., Antoniou G. E.: Minimal state space realization of 3–D systems. IEE Proceedings Part G 135 (1988), 65–70

[11] Yeung K. S., Kumbi F.: Symbolic matrix inversion with application to electronic circuits. IEEE Trans. Circuits and Systems CAS-35 (1988), 2, 235–239 | DOI | Zbl