Keywords: nonlinear uncertain dynamic system; stabilizing controller
@article{KYB_2000_36_5_a1,
author = {Hammami, Mohamed Ali},
title = {On the state observation and stability for uncertain nonlinear systems},
journal = {Kybernetika},
pages = {531--538},
year = {2000},
volume = {36},
number = {5},
mrnumber = {1882792},
zbl = {1249.93091},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a1/}
}
Hammami, Mohamed Ali. On the state observation and stability for uncertain nonlinear systems. Kybernetika, Tome 36 (2000) no. 5, pp. 531-538. http://geodesic.mathdoc.fr/item/KYB_2000_36_5_a1/
[1] Dawson D. M., Qu Z. C.Carroll J.: On the state observation and output feedback problems for nonlinear uncertain dynamic systems. Sysems Control Lett. 18 (1992), 217–222 | DOI | MR | Zbl
[2] Ferfera A., Hammami M. A.: Stabilization of composite nonlinear systems by n estimated state feedback law. In: NOLCOS’95 California 1995, pp. 697–701
[3] Hammami M. A.: Stabilization of a class of nonlinear systems using an observer design. In: Proc. 32nd IEEE Conf. Decision Control, San Antonio, Texas 1993, pp. 1954–1959
[4] Kou S., Elliott D., Tarn T.: Exponential observers for nonlinear dynamic systems. Inform. and Control 29 (1976), 3, 204–216 | DOI | MR
[5] Qu Z.: Global stabilization of nonlinear systems with a class of unmatched uncertainties. Systems Control Lett. 18 (1992), 301–307 | DOI | MR | Zbl
[6] Sontag E. D.: A universal construction of Arstein’s Theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 117–123 | DOI | MR
[7] Thau F.: Observing the states of nonlinear dynamic systems. Internat. J. Control 17 (1993), 471–479 | DOI
[8] Tsinias J.: A theorem on global stabilization of nonlinear systems by linear feedback. Systems Control Lett. 17 (1991), 357–362 | DOI | MR | Zbl
[9] Walcott B., Zak S.: State observation of nonlinear uncertain dynamical systems. IEEE. Trans. Automat. Control 32 (1987), 2, 166–170 | DOI | MR | Zbl
[10] Wu H., Mizukami K.: Exponential stability of a class of nonlinear dynamic systems with uncertainties. Systems Control Lett. 21 (1993), 307–313 | DOI | MR