Self-tuning controllers based on orthonormal functions
Kybernetika, Tome 36 (2000) no. 4, pp. 477-491 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Problems of the system identification using orthonormal functions are discussed and algorithms of computing parameters of the discrete time state- space model of the plant based on the generalized orthonormal functions and the Laguerre functions are derived. The adaptive LQ regulator and the predictive controller based on the Laguerre function model are also presented. The stability and the robustness of the closed loop using the predictive controller are investigated.
Problems of the system identification using orthonormal functions are discussed and algorithms of computing parameters of the discrete time state- space model of the plant based on the generalized orthonormal functions and the Laguerre functions are derived. The adaptive LQ regulator and the predictive controller based on the Laguerre function model are also presented. The stability and the robustness of the closed loop using the predictive controller are investigated.
Classification : 93B30, 93B51, 93C55, 93D09
Keywords: orthonormal functions; discrete time state-space model; predictive controller
@article{KYB_2000_36_4_a6,
     author = {Hejdi\v{s}, Jozef and Koz\'ak, \v{S}tefan and Jur\'a\v{c}kov\'a, \v{L}ubica},
     title = {Self-tuning controllers based on orthonormal functions},
     journal = {Kybernetika},
     pages = {477--491},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1830651},
     zbl = {1249.93121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a6/}
}
TY  - JOUR
AU  - Hejdiš, Jozef
AU  - Kozák, Štefan
AU  - Juráčková, Ľubica
TI  - Self-tuning controllers based on orthonormal functions
JO  - Kybernetika
PY  - 2000
SP  - 477
EP  - 491
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a6/
LA  - en
ID  - KYB_2000_36_4_a6
ER  - 
%0 Journal Article
%A Hejdiš, Jozef
%A Kozák, Štefan
%A Juráčková, Ľubica
%T Self-tuning controllers based on orthonormal functions
%J Kybernetika
%D 2000
%P 477-491
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a6/
%G en
%F KYB_2000_36_4_a6
Hejdiš, Jozef; Kozák, Štefan; Juráčková, Ľubica. Self-tuning controllers based on orthonormal functions. Kybernetika, Tome 36 (2000) no. 4, pp. 477-491. http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a6/

[1] Agamennoni O., Paolini E., Desages A.: On robust stability analysis of a control system using Laguerre series. Automatica 28 (1992), 4, 815–818 | DOI | MR | Zbl

[2] Bitmead R. R., Gevers M., Wertz V.: Adaptive Optimal Control. Prentice Hall, Sydney 1990 | Zbl

[3] Dumont G. A., Fu Y.: Laguerre expansion of Voltera kernels. Internat. J. Adaptive Control Signal Processing 7 (1993), 367–382 | DOI

[4] Dumont G. A., Elnaggar A., Elshafei A.: Adaptive predictive control of systems with time–varying time delay. Internat. J. Adaptive Control Signal Processing 7 (1993), 91–101 | DOI | Zbl

[5] Dumont G. A., Zervos C. C., Pageau G. L.: Laguerre–based adaptive control of pH in an industrial bleach plant extraction stage. Automatica 26 (1990), 4, 781–787 | DOI | Zbl

[6] Elshafei A. L., Dumont G., Elnaggar A.: Perturbation analysis of GPC with one-step control horizon. Automatica 29 (1993), 725–728 | MR

[7] Elshafei A. L., Dumont G., Elnaggar A.: Adaptive GPC based on Laguerre–filters modeling. Automatica 30 (1994), 12, 1913–1920 | DOI | MR

[8] Hejdiš J., Juráčková Ľ., Kozák Š.: Self–tuning controller based on Laguerre function for time–delay systems. In: IFAC Conference on System Structure and Control, Nantes 1998, pp. 669–675

[9] Hudzovič P.: Orthogonal Exponential Functions. Internal Report KASR FEI STU, Bratislava 1991

[10] Mäkilä P. M.: Approximation of stable systems by Laguerre filters. Automatica 26 (1990), 2, 333–345 | DOI | MR | Zbl

[11] Oliveira G. H. C., Favier G., Dumont G., Amaral W. C.: Robust predictive control based on Laguerre filters modeling. In: Preprints IFAC, San Francisco 1996, pp. 375–380

[12] al V. Peterka et: Algorithms for Adaptive Microprocesor Control of Technological Plants. Institute of Information Theory and Automation of the Czechoslovak Academy of Sciences, Prague 1982

[13] Zervos C. C., Dumont G. A.: Deterministic adaptive control based on Laguerre series representation. Internat. J. Control 18 (1988), 6, 2333–2359 | DOI | MR | Zbl

[14] Wahlberg B.: System identification using Laguerre models. IEEE Trans. Automat. Control 36 (1991), 5, 551–561 | DOI | MR | Zbl