Controllability of semilinear functional integrodifferential systems in Banach spaces
Kybernetika, Tome 36 (2000) no. 4, pp. 465-476 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.
Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.
Classification : 34G20, 93B05, 93B28, 93C25
Keywords: controllability; integro-differential system; Banach space
@article{KYB_2000_36_4_a5,
     author = {Balachandran, Krishnan and Sakthivel, Rathinasamy},
     title = {Controllability of semilinear functional integrodifferential systems in {Banach} spaces},
     journal = {Kybernetika},
     pages = {465--476},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1830650},
     zbl = {1249.93017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a5/}
}
TY  - JOUR
AU  - Balachandran, Krishnan
AU  - Sakthivel, Rathinasamy
TI  - Controllability of semilinear functional integrodifferential systems in Banach spaces
JO  - Kybernetika
PY  - 2000
SP  - 465
EP  - 476
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a5/
LA  - en
ID  - KYB_2000_36_4_a5
ER  - 
%0 Journal Article
%A Balachandran, Krishnan
%A Sakthivel, Rathinasamy
%T Controllability of semilinear functional integrodifferential systems in Banach spaces
%J Kybernetika
%D 2000
%P 465-476
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a5/
%G en
%F KYB_2000_36_4_a5
Balachandran, Krishnan; Sakthivel, Rathinasamy. Controllability of semilinear functional integrodifferential systems in Banach spaces. Kybernetika, Tome 36 (2000) no. 4, pp. 465-476. http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a5/

[1] Balachandran K., Dauer J. P.: Controllability of Sobolev–type integrodifferential systems in Banach spaces. J. Math. Anal. Appl. 217 (1998), 335–348 | DOI | MR | Zbl

[2] Balachandran K., Dauer J. P., Balasubramaniam P.: Local null controllability of nonlinear functional differential systems in Banach spaces. J. Optim. Theory Appl. 88 (1996), 61–75 | DOI | MR

[3] Chukwu E. N., Lenhart S. M.: Controllability questions for nonlinear systems in abstract spaces. J. Optim. Theory Appl. 68 (1991), 437–462 | DOI | MR | Zbl

[4] Do V. N.: A note on approximate controllability of semilinear systems. Systems Control Lett. 12 (1989), 365–371 | DOI | MR | Zbl

[5] Fitzgibbon W. E.: Semilinear integrodifferential equations in a Banach space. Nonlinear Anal. 4 (1980), 745-760 | DOI | MR

[6] Heard M. L.: An abstract semilinear hyperbolic Volterra integrodifferential equation. J. Math. Anal. Appl. 80 (1981), 175–202 | DOI | MR | Zbl

[7] Kwun Y. C., Park J. Y., Ryu J. W.: Approximate controllability and controllability for delay Volterra systems. Bull. Korean Math. Soc. 28 (1991), 131–145 | MR

[8] III J. H. Lightbourne, III S. M. Rankin: A partial functional differential equation of Sobolev-type. J. Math. Anal. Appl. 93 (1983), 328–337 | DOI | MR

[9] MacCamy R.: An integrodifferential equation with applications in heat flow. Quart. Appl. Math. 35 (1977/78), 1–19 | MR

[10] Ntouyas S. K., Tsamatos P. Ch.: Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl. 210 (1997), 679–687 | DOI | MR | Zbl

[11] Ntouyas S. K.: Global existence for functional semilinear integrodifferential equations. Arch. Math. 34 (1998), 239–256 | MR

[12] Naito K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 25 (1987), 715–722 | DOI | MR | Zbl

[13] Naito K.: Approximate controllability for trajectories of semilinear control systems. J. Optim. Theory Appl. 60 (1989), 57–65 | DOI | MR | Zbl

[14] Naito K.: On controllability for a nonlinear Volterra equation. Nonlinear Anal. Theory, Methods and Applications 18 (1992), 99–108 | DOI | MR | Zbl

[15] Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York 1983 | MR | Zbl

[16] Quinn M. D., Carmichael N.: An approach to nonlinear control problems using fixed point methods, degree theory, and pseudo-inverses. Numer. Funct. Anal. Optim. 7 (1984–1985), 197–219 | MR

[17] Schaefer H.: Über die Methode der a Priori Schranken. Math. Ann. 129 (1955), 415–416 | DOI | MR | Zbl

[18] Webb G.: An abstract semilinear Volterra integrodifferential equation. Proc. Amer. Math. Soc. 69 (1978), 255–260 | DOI | MR | Zbl

[19] Yamamoto M., Park J. Y.: Controllability for parabolic equations with uniformly bounded nonlinear terms. J. Optim. Theory Appl. 66 (1990), 515–532 | DOI | MR | Zbl

[20] Zhou H. X.: Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim. 21 (1983), 551–565 | DOI | MR | Zbl