Keywords: controllability; integro-differential system; Banach space
@article{KYB_2000_36_4_a5,
author = {Balachandran, Krishnan and Sakthivel, Rathinasamy},
title = {Controllability of semilinear functional integrodifferential systems in {Banach} spaces},
journal = {Kybernetika},
pages = {465--476},
year = {2000},
volume = {36},
number = {4},
mrnumber = {1830650},
zbl = {1249.93017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a5/}
}
TY - JOUR AU - Balachandran, Krishnan AU - Sakthivel, Rathinasamy TI - Controllability of semilinear functional integrodifferential systems in Banach spaces JO - Kybernetika PY - 2000 SP - 465 EP - 476 VL - 36 IS - 4 UR - http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a5/ LA - en ID - KYB_2000_36_4_a5 ER -
Balachandran, Krishnan; Sakthivel, Rathinasamy. Controllability of semilinear functional integrodifferential systems in Banach spaces. Kybernetika, Tome 36 (2000) no. 4, pp. 465-476. http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a5/
[1] Balachandran K., Dauer J. P.: Controllability of Sobolev–type integrodifferential systems in Banach spaces. J. Math. Anal. Appl. 217 (1998), 335–348 | DOI | MR | Zbl
[2] Balachandran K., Dauer J. P., Balasubramaniam P.: Local null controllability of nonlinear functional differential systems in Banach spaces. J. Optim. Theory Appl. 88 (1996), 61–75 | DOI | MR
[3] Chukwu E. N., Lenhart S. M.: Controllability questions for nonlinear systems in abstract spaces. J. Optim. Theory Appl. 68 (1991), 437–462 | DOI | MR | Zbl
[4] Do V. N.: A note on approximate controllability of semilinear systems. Systems Control Lett. 12 (1989), 365–371 | DOI | MR | Zbl
[5] Fitzgibbon W. E.: Semilinear integrodifferential equations in a Banach space. Nonlinear Anal. 4 (1980), 745-760 | DOI | MR
[6] Heard M. L.: An abstract semilinear hyperbolic Volterra integrodifferential equation. J. Math. Anal. Appl. 80 (1981), 175–202 | DOI | MR | Zbl
[7] Kwun Y. C., Park J. Y., Ryu J. W.: Approximate controllability and controllability for delay Volterra systems. Bull. Korean Math. Soc. 28 (1991), 131–145 | MR
[8] III J. H. Lightbourne, III S. M. Rankin: A partial functional differential equation of Sobolev-type. J. Math. Anal. Appl. 93 (1983), 328–337 | DOI | MR
[9] MacCamy R.: An integrodifferential equation with applications in heat flow. Quart. Appl. Math. 35 (1977/78), 1–19 | MR
[10] Ntouyas S. K., Tsamatos P. Ch.: Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl. 210 (1997), 679–687 | DOI | MR | Zbl
[11] Ntouyas S. K.: Global existence for functional semilinear integrodifferential equations. Arch. Math. 34 (1998), 239–256 | MR
[12] Naito K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 25 (1987), 715–722 | DOI | MR | Zbl
[13] Naito K.: Approximate controllability for trajectories of semilinear control systems. J. Optim. Theory Appl. 60 (1989), 57–65 | DOI | MR | Zbl
[14] Naito K.: On controllability for a nonlinear Volterra equation. Nonlinear Anal. Theory, Methods and Applications 18 (1992), 99–108 | DOI | MR | Zbl
[15] Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York 1983 | MR | Zbl
[16] Quinn M. D., Carmichael N.: An approach to nonlinear control problems using fixed point methods, degree theory, and pseudo-inverses. Numer. Funct. Anal. Optim. 7 (1984–1985), 197–219 | MR
[17] Schaefer H.: Über die Methode der a Priori Schranken. Math. Ann. 129 (1955), 415–416 | DOI | MR | Zbl
[18] Webb G.: An abstract semilinear Volterra integrodifferential equation. Proc. Amer. Math. Soc. 69 (1978), 255–260 | DOI | MR | Zbl
[19] Yamamoto M., Park J. Y.: Controllability for parabolic equations with uniformly bounded nonlinear terms. J. Optim. Theory Appl. 66 (1990), 515–532 | DOI | MR | Zbl
[20] Zhou H. X.: Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim. 21 (1983), 551–565 | DOI | MR | Zbl