A maximum likelihood estimator of an inhomogeneous Poisson point processes intensity using beta splines
Kybernetika, Tome 36 (2000) no. 4, pp. 455-464 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The problem of estimating the intensity of a non-stationary Poisson point process arises in many applications. Besides non parametric solutions, e. g. kernel estimators, parametric methods based on maximum likelihood estimation are of interest. In the present paper we have developed an approach in which the parametric function is represented by two-dimensional beta-splines.
The problem of estimating the intensity of a non-stationary Poisson point process arises in many applications. Besides non parametric solutions, e. g. kernel estimators, parametric methods based on maximum likelihood estimation are of interest. In the present paper we have developed an approach in which the parametric function is represented by two-dimensional beta-splines.
Classification : 60G55, 62M09, 62M30
Keywords: non-stationary Poisson point process; estimating the intensity
@article{KYB_2000_36_4_a4,
     author = {Krej\v{c}{\'\i}\v{r}, Pavel},
     title = {A maximum likelihood estimator of an inhomogeneous {Poisson} point processes intensity using beta splines},
     journal = {Kybernetika},
     pages = {455--464},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1830649},
     zbl = {1249.60096},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a4/}
}
TY  - JOUR
AU  - Krejčíř, Pavel
TI  - A maximum likelihood estimator of an inhomogeneous Poisson point processes intensity using beta splines
JO  - Kybernetika
PY  - 2000
SP  - 455
EP  - 464
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a4/
LA  - en
ID  - KYB_2000_36_4_a4
ER  - 
%0 Journal Article
%A Krejčíř, Pavel
%T A maximum likelihood estimator of an inhomogeneous Poisson point processes intensity using beta splines
%J Kybernetika
%D 2000
%P 455-464
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a4/
%G en
%F KYB_2000_36_4_a4
Krejčíř, Pavel. A maximum likelihood estimator of an inhomogeneous Poisson point processes intensity using beta splines. Kybernetika, Tome 36 (2000) no. 4, pp. 455-464. http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a4/

[1] Baddeley A., Turner R.: Practical Maximum Pseudolikelihood for Spatial Point Patterns. Research Report No. 1998/16, Department of Mathematics and Statistics, University of Western Australia 1998

[2] Berman M., Turner T. R.: Approximating point process likelihoods with glim. Appl. Statist. 41 (1992), 1, 31–38 | DOI | Zbl

[3] Daley D. J., Vere–Jones D.: An Introduction to the Theory of Point Processes. Springer, New York 1988 | MR | Zbl

[4] Daniel M., Kolář J., Zeman P., Pavelka K., Sádlo J.: Prediction of sites of enhanced risk of tick Ixodes ricinus attack and developping tick-borne encephalitis in Central Bohemia using satelite data. Epidemiol. Mikrobiol. Imunol. 47 (1998), 1, 3–11

[5] Geyer C. J.: Likelihood inference for spatial point processes. In: Stochastic Geometry, Likelihood and Computation (O. E. Barndorff–Nielsen et al, eds.), Chapman and Hall, London 1999, pp. 79–140 | MR

[6] Machek J.: On statistical models for the mapping of disease-risk. In: International Conference on Stereology, Spatial Statistics and Stochastic Geometry (V. Beneš, J. Janáček and I. Saxl, eds.), Union of the Czech Mathematicians and Physicists, Prague 1999, pp. 191–196

[7] Marčuk G. I.: Methods of Numerical Mathematics. Academia, Prague 1987 | MR

[8] Mašata M.: Assessment of risk infection by means of a bayesian method. In: International Conference on Stereology, Spatial Statistics and Stochastic Geometry (V. Beneš, J. Janáček and I. Saxl, eds.), Union of the Czech Mathematicians and Physicists, Prague 1999, pp. 197–202

[9] Stern S. H., Cressie N.: Inference for extremes in disease mapping. In: Methods of Disease Mapping and Risk Assesment for Public Health Decision Making (A. Lawson et al, eds.), Wiley, New York 1999 | Zbl

[10] Zeman P.: Objective assesment of risk maps of tick-borne encephalitis and lyme borreliosis based on spatial patterns of located cases. Internat. J. Epidemiology 26 (1997), 5, 1121–1129 | DOI