Keywords: non-stationary Poisson point process; estimating the intensity
@article{KYB_2000_36_4_a4,
author = {Krej\v{c}{\'\i}\v{r}, Pavel},
title = {A maximum likelihood estimator of an inhomogeneous {Poisson} point processes intensity using beta splines},
journal = {Kybernetika},
pages = {455--464},
year = {2000},
volume = {36},
number = {4},
mrnumber = {1830649},
zbl = {1249.60096},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a4/}
}
Krejčíř, Pavel. A maximum likelihood estimator of an inhomogeneous Poisson point processes intensity using beta splines. Kybernetika, Tome 36 (2000) no. 4, pp. 455-464. http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a4/
[1] Baddeley A., Turner R.: Practical Maximum Pseudolikelihood for Spatial Point Patterns. Research Report No. 1998/16, Department of Mathematics and Statistics, University of Western Australia 1998
[2] Berman M., Turner T. R.: Approximating point process likelihoods with glim. Appl. Statist. 41 (1992), 1, 31–38 | DOI | Zbl
[3] Daley D. J., Vere–Jones D.: An Introduction to the Theory of Point Processes. Springer, New York 1988 | MR | Zbl
[4] Daniel M., Kolář J., Zeman P., Pavelka K., Sádlo J.: Prediction of sites of enhanced risk of tick Ixodes ricinus attack and developping tick-borne encephalitis in Central Bohemia using satelite data. Epidemiol. Mikrobiol. Imunol. 47 (1998), 1, 3–11
[5] Geyer C. J.: Likelihood inference for spatial point processes. In: Stochastic Geometry, Likelihood and Computation (O. E. Barndorff–Nielsen et al, eds.), Chapman and Hall, London 1999, pp. 79–140 | MR
[6] Machek J.: On statistical models for the mapping of disease-risk. In: International Conference on Stereology, Spatial Statistics and Stochastic Geometry (V. Beneš, J. Janáček and I. Saxl, eds.), Union of the Czech Mathematicians and Physicists, Prague 1999, pp. 191–196
[7] Marčuk G. I.: Methods of Numerical Mathematics. Academia, Prague 1987 | MR
[8] Mašata M.: Assessment of risk infection by means of a bayesian method. In: International Conference on Stereology, Spatial Statistics and Stochastic Geometry (V. Beneš, J. Janáček and I. Saxl, eds.), Union of the Czech Mathematicians and Physicists, Prague 1999, pp. 197–202
[9] Stern S. H., Cressie N.: Inference for extremes in disease mapping. In: Methods of Disease Mapping and Risk Assesment for Public Health Decision Making (A. Lawson et al, eds.), Wiley, New York 1999 | Zbl
[10] Zeman P.: Objective assesment of risk maps of tick-borne encephalitis and lyme borreliosis based on spatial patterns of located cases. Internat. J. Epidemiology 26 (1997), 5, 1121–1129 | DOI