Second order asymptotic distribution of the $R_\phi$-divergence goodness-of-fit statistics
Kybernetika, Tome 36 (2000) no. 4, pp. 437-454 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The distribution of each member of the family of statistics based on the $R_{\phi }$-divergence for testing goodness-of-fit is a chi-squared to $o(1)$ (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the $\phi $-dependent second order component from the $o(1)$ term.
The distribution of each member of the family of statistics based on the $R_{\phi }$-divergence for testing goodness-of-fit is a chi-squared to $o(1)$ (Pardo [pard96]). In this paper a closer approximation to the exact distribution is obtained by extracting the $\phi $-dependent second order component from the $o(1)$ term.
Classification : 62B10, 62E17, 62E20, 62G10
@article{KYB_2000_36_4_a3,
     author = {Pardo, Mar{\'\i}a Carmen},
     title = {Second order asymptotic distribution of the $R_\phi$-divergence goodness-of-fit statistics},
     journal = {Kybernetika},
     pages = {437--454},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1830648},
     zbl = {1245.62046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a3/}
}
TY  - JOUR
AU  - Pardo, María Carmen
TI  - Second order asymptotic distribution of the $R_\phi$-divergence goodness-of-fit statistics
JO  - Kybernetika
PY  - 2000
SP  - 437
EP  - 454
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a3/
LA  - en
ID  - KYB_2000_36_4_a3
ER  - 
%0 Journal Article
%A Pardo, María Carmen
%T Second order asymptotic distribution of the $R_\phi$-divergence goodness-of-fit statistics
%J Kybernetika
%D 2000
%P 437-454
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a3/
%G en
%F KYB_2000_36_4_a3
Pardo, María Carmen. Second order asymptotic distribution of the $R_\phi$-divergence goodness-of-fit statistics. Kybernetika, Tome 36 (2000) no. 4, pp. 437-454. http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a3/

[1] Ali M. S., Silvey D.: A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 28 (1966), 131–140 | MR | Zbl

[2] Bednarski T., Ledwina T.: A note on a biasedness of tests of fit. Mathematische Operationsforschung und Statistik, Series Statistics 9 (1978), 191–193 | MR

[3] Burbea J.: $J$-divergences and related topics. Encycl. Statist. Sci. 44 (1983), 290–296

[4] Burbea J., Rao C. R.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inform. Theory 28 (1982), 489–495 | DOI | MR | Zbl

[5] Burbea J., Rao C. R.: On the convexity of higher order Jensen differences based on entropy function. IEEE Trans. Inform. Theory 28 (1982), 961–963 | DOI | MR

[6] Cohen A., Sackrowitz H. B.: Unbiasedness of the chi–square, likelihood ratio, and other goodness of fit tests for the equal cell case. Ann. Statist. 3 (1975), 959–964 | DOI | MR | Zbl

[7] Cressie N., Read T. R. C.: Multinomial goodness of fit test. J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 | MR

[8] Csiszár I.: Eine Informationtheoretische Ungleichung und ihre Anwendung auf den Bewis der Ergodizität von Markhoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. Ser. A 8 (1963), 85–108 | MR

[9] Greenwood P. E., Nikolin M. S.: A Guide to Chi–squared Testing. Wiley, New York 1996 | MR

[10] Liese F., Vajda I.: Convex Statistical Distances. Teubner, Leipzig 1987 | MR | Zbl

[11] Mann H. B., Wald A.: On the choice of the number of intervals in the application of the chi–square test. Ann. Math. Statist. 13 (1942), 306–317 | DOI | MR

[12] Pardo M. C.: On Burbea–Rao divergences based goodness–of–fit tests for multinomial models. J. Multivariate Anal. 69 (1999), 65–87 | DOI | MR

[13] Pardo M. C., Vajda I.: About distances of discrete distributions satisfying the data processing theorem of information theory. Trans. IEEE Inform. Theory 43 (1997), 4, 1288–1293 | DOI | MR | Zbl

[14] Pearson K.: On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophy Magazine 50 (1900), 157–172

[15] Rao C. R.: Asymptotic efficiency and limiting information. In: Proc. 4th Berkeley Symp. on Math. Statist. Probab. 1, Univ. of California Press, Berkeley 1961, pp. 531–546 | MR | Zbl

[16] Rao C. R.: Linear Statistical Inference and Its Applications. Second edition. Wiley, New York 1973 | MR | Zbl

[17] Rao C. R.: Analysis of Diversity: A Unified Approach. Technical Report No. 81-26, University of Pittsburhg 1981 | MR | Zbl

[18] Read T. R. C.: On Choosing a Goodness–of–fit test. Unpublished Ph.D. Thesis, Flinders University, South Australia 1982 | Zbl

[19] Read T. R. C.: Closer asymptotic approximations for the distributions of the power divergence goodness–of–fit statistics. Ann. Inst. Statist. Math. 36 (1984), Part A, 59–69 | DOI | MR | Zbl

[20] Read T. R. C., Cressie N.: Goodness of Fit Statistics for Discrete Multivariate Data. Springer, New York 1988 | MR | Zbl

[21] Schorr B.: On the choice of the class intervals in the application of the chi–square test. Math. Operationsforsch. Statist. 5 (1974), 357–377 | DOI | MR | Zbl

[22] Siotani M., Fujikoshi Y.: Asymptotic approximations for the distributions of multinomial goodness–of–fit statistics. Hiroshima Math. J. 14 (1984), 115–124 | MR | Zbl

[23] Sturges H. A.: The choice of a class interval. J. Amer. Statist. Assoc. 21 (1926), 65–66 | DOI

[24] Vajda I.: Theory of Statistical Inference and Information. Kluwer Academic Publishers, Dordrecht – Boston 1989 | Zbl

[25] Yarnold J. K.: Asymptotic approximations for the probability that a sum of lattice random vectors lies in a convex set. Ann. of Math. Statist. 43 (1972), 1566–1580 | DOI | MR | Zbl

[26] Zografos K., Ferentinos K., Papaioannou T.: $\varphi $-divergence statistics: sampling properties and multinomial goodness of fit divergence tests. Comm. Statist. – Theory Methods 19 (1990), 5, 1785–1802 | DOI | MR