Some invariant test procedures for detection of structural changes
Kybernetika, Tome 36 (2000) no. 4, pp. 401-414 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Regression and scale invariant $M$-test procedures are developed for detection of structural changes in linear regression model. Their limit properties are studied under the null hypothesis.
Regression and scale invariant $M$-test procedures are developed for detection of structural changes in linear regression model. Their limit properties are studied under the null hypothesis.
Classification : 60F05, 62F03, 62J05, 62P20
Keywords: linear regression; $M$-test procedures
@article{KYB_2000_36_4_a1,
     author = {Hu\v{s}kov\'a, Marie},
     title = {Some invariant test procedures for detection of structural changes},
     journal = {Kybernetika},
     pages = {401--414},
     year = {2000},
     volume = {36},
     number = {4},
     mrnumber = {1830646},
     zbl = {1248.62114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a1/}
}
TY  - JOUR
AU  - Hušková, Marie
TI  - Some invariant test procedures for detection of structural changes
JO  - Kybernetika
PY  - 2000
SP  - 401
EP  - 414
VL  - 36
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a1/
LA  - en
ID  - KYB_2000_36_4_a1
ER  - 
%0 Journal Article
%A Hušková, Marie
%T Some invariant test procedures for detection of structural changes
%J Kybernetika
%D 2000
%P 401-414
%V 36
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a1/
%G en
%F KYB_2000_36_4_a1
Hušková, Marie. Some invariant test procedures for detection of structural changes. Kybernetika, Tome 36 (2000) no. 4, pp. 401-414. http://geodesic.mathdoc.fr/item/KYB_2000_36_4_a1/

[1] Billingsley P.: Convergence of Probability Measures. Wiley, New York 1968 | MR | Zbl

[2] Csörgő M., Horváth L.: Weighted Approximations in Probability and Statistics. Wiley, New York 1993 | MR

[3] Csörgő M., Horváth L.: Limit Theorems in Change–point Analysis. Wiley, New York 1997 | MR

[5] Huber P. J.: Robust Statistics. Wiley, New York 1981 | MR

[6] Hušková M.: Some sequential procedures based on regression rank scores. Nonparametric Statistics 3 (1994), 285–298 | DOI | MR

[7] Hušková M.: Limit theorems for $M$-processes via rank statistics processes. In: Advances in Combinatorial Methods with Applications to Probability and Statistics (N. Balakrishnan, ed.), Birkhäuser, Boston 1997, pp. 521–534 | MR | Zbl

[8] Hušková M.: $L_1$-test procedures for detection of change. In: $L_1$-Statistical Procedures and Related Topics (IMS Lecture Notes–Monograph Series 31), Institute of Mathematical Statistics, Hayward, California 1997, pp. 56–70 | Zbl

[9] Jandhyala V. K., MacNeill I. B.: Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stochastic Process. Appl. 33 (1989), 309–323 | MR | Zbl

[10] Jurečková J., Sen P. K.: On adaptive scale-equivariant $M$-estimators in linear models. Statist. Decisions. Supplement Issue 1 (1984), 31–41 | Zbl

[11] Jurečková J., Sen P. K.: Regression rank scores scale statistics and studentization in linear models. In: Asymptotic Statistics (M. Hušková and P. Mandl, eds.), Physica–Verlag, Heidelberg 1994, pp. 111–122 | MR

[12] Ploberger K., Krämer W., Kontrus K.: A new test for structural stability in linear regression model. J. Econometrics 40 (1989), 307–318 | DOI | MR

[13] Quandt R. E.: Tests of hypothesis that a linear regression systems obeys two separate regimes. J. Amer. Statist. Assoc. 55 (1960), 324–330 | DOI | MR

[14] Víšek T.: Detection of Changes in Econometric Models. Ph.D. Dissertation, Charles University, Prague 1999

[15] Worsley K. J.: Testing for a two-phase multiple regression. Technometrics 25 (1983), 35–42 | DOI | MR | Zbl