Generated triangular norms
Kybernetika, Tome 36 (2000) no. 3, pp. 363-377 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

An overview of generated triangular norms and their applications is presented. Several properties of generated $t$-norms are investigated by means of the corresponding generators, including convergence properties. Some applications are given. An exhaustive list of relevant references is included.
An overview of generated triangular norms and their applications is presented. Several properties of generated $t$-norms are investigated by means of the corresponding generators, including convergence properties. Some applications are given. An exhaustive list of relevant references is included.
Classification : 03E72, 54A40, 54E70
Keywords: triangular norm
@article{KYB_2000_36_3_a6,
     author = {Klement, Erich Peter and Mesiar, Radko and Pap, Endre},
     title = {Generated triangular norms},
     journal = {Kybernetika},
     pages = {363--377},
     year = {2000},
     volume = {36},
     number = {3},
     mrnumber = {1773510},
     zbl = {1249.03100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a6/}
}
TY  - JOUR
AU  - Klement, Erich Peter
AU  - Mesiar, Radko
AU  - Pap, Endre
TI  - Generated triangular norms
JO  - Kybernetika
PY  - 2000
SP  - 363
EP  - 377
VL  - 36
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a6/
LA  - en
ID  - KYB_2000_36_3_a6
ER  - 
%0 Journal Article
%A Klement, Erich Peter
%A Mesiar, Radko
%A Pap, Endre
%T Generated triangular norms
%J Kybernetika
%D 2000
%P 363-377
%V 36
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a6/
%G en
%F KYB_2000_36_3_a6
Klement, Erich Peter; Mesiar, Radko; Pap, Endre. Generated triangular norms. Kybernetika, Tome 36 (2000) no. 3, pp. 363-377. http://geodesic.mathdoc.fr/item/KYB_2000_36_3_a6/

[1] Abel N. H.: Untersuchungen der Funktionen zweier unabhängigen veränderlichen Groessen $x$ und $y$ wie $f(x,y)$, welche die Eigenschaft haben, dass $f(z,\,f(x,y))$ eine symmetrische Funktion von $x,\,y$ und $z$ ist. J. Reine Angew. Math. 1 (1928), 11–15

[2] Aczél J.: Sur les opérations definies pour des nombres réels. Bull. Soc. Math. France 76 (1949), 59–64

[3] Aczél J.: Lectures on Functional Equations and their Applications. Academic Press, New York 1966 | MR

[4] Aczél J., Alsina C.: Characterization of some classes of quasilinear functions with applications to triangular norms and to synthesizing judgments. Methods Oper. Res. 48 (1984), 3–22 | MR

[5] Arnold V.: Concerning the representability of functions of two variables in the form $X[\Phi (x)+\Psi (y)]$. Uspekhi Mat. Nauk 12 (1957), 119–121 | MR

[6] Bezdek J. C., Harris J. D.: Fuzzy partitions and relations: An axiomatic basis for clustering. Fuzzy Sets and Systems 1 (1978), 111–127 | MR | Zbl

[7] Calvo T., Mesiar R.: Continuous generated associative aggregation operators. Submitted | Zbl

[8] Baets B. De, Mesiar R.: Pseudo–metrics and $T$–equivalences. J. Fuzzy Math. 5 (1997), 471–481 | MR

[9] Baets B. De, Mesiar R.: ${\mathcal T}$-partitions. Fuzzy Sets and Systems 97 (1998), 211–223 | MR

[10] Dombi J.: Basic concepts for a theory of evaluation: The aggregative operator. Europ. J. Oper. Research 10 (1982), 282–293 | DOI | MR | Zbl

[11] Dombi J.: A general class of fuzzy operators, De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets and Systems 8 (1982), 149–163 | DOI | MR

[12] Dubois D., Prade H.: Fuzzy numbers: An overview. In: Analysis of Fuzzy Information, Vol. I: Mathematics and Logic (J. C. Bezdek, ed.), CRC Press, Boca Raton 1987, pp. 3–39 | MR | Zbl

[13] Dubois D., Kerre E. E., Mesiar R., Prade H.: Fuzzy interval analysis. In: Mathematics and Fuzzy Sets. Basic Principles. The Handbook of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Kluwer Acad. Publ., Boston 2000, pp. 483–582 | MR | Zbl

[14] Féron R.: Sur les tableaux de corrélation dont les marges sont donneés. Publ. Inst. Statist. Univ. Paris 5 (1956), 3–12 | MR | Zbl

[15] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl

[16] Fullér R., Keresztfalvi T.: $t$-norm based addition of fuzzy intervals. Fuzzy Sets and Systems 51 (1992), 155–159 | DOI | MR

[17] Fung L. W., Fu K. S.: An axiomatic approach to rational decision making in a fuzzy environment. In: Fuzzy Sets and Their Applications to Cognitive and Decision Processes (L. A. Zadeh et al, eds.), Academic Press, New York 1975, pp. 227–256 | MR | Zbl

[18] Gottwald S.: Approximate solutions of fuzzy relational equations and a characterization of $t$-norms that define metrics for fuzzy sets. Fuzzy Sets and Systems 75 (1995), 189–201 | MR | Zbl

[19] Hamacher H.: Uber logische Aggregationen nicht-binär explizierter Entscheidungskriterien. Rita G. Fischer Verlag, Frankfurt 1978

[20] Hoele U.: Fuzzy equalities and indistinguishability. In: Proc. EUFIT’93, Aachen 1993, pp. 358–363

[21] Jenei S.: On Archimedean triangular norms. Fuzzy Sets and Systems 99 (1998), 179–186 | DOI | MR | Zbl

[22] Jenei S., Fodor J. C.: On continuous triangular norms. Fuzzy Sets and Systems 100 (1998), 273–282 | DOI | MR | Zbl

[23] Klement E. P.: Construction of fuzzy $\sigma $-algebras using triangular norms. J. Math. Anal. Appl. 85 (1982), 543–565 | DOI | MR | Zbl

[24] Klement E. P., Mesiar R., Pap E.: On the relationship of associative compensatory operators to triangular norms and conorms. Internat. J. Uncertain. Fuzziness Knowledge–Based Systems 4 (1996), 129–144 | DOI | MR | Zbl

[25] Klement E. P., Mesiar R., Pap E.: Additive generators of $t$-norms which are not necessarily continuous. In: Proc. EUFIT’98, Aachen 1996, pp. 70–73

[26] Klement E. P., Mesiar R., Pap E.: A characterization of the ordering of continuous $t$-norms. Fuzzy Sets and Systems 86 (1997), 189–195 | DOI | MR | Zbl

[27] Klement E. P., Mesiar R., Pap E.: Quasi– and pseudo–inverses of monotone functions, and the construction of $t$-norms. Fuzzy Sets and Systems 104 (1999), 3–13 | MR | Zbl

[28] Klement E. P., Mesiar R., Pap E.: Triangular Norms. Kluwer Acad. Publ., Dordrecht 2000 | MR | Zbl

[29] Kolesárová A.: Triangular norm–based addition of linear fuzzy numbers. Tatra Mt. Math. Publ. 6 (1995), 75–81 | MR | Zbl

[30] Kolesárová A.: Similarity preserving $t$-norm–based addition of fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 215–229 | DOI | MR

[31] Kolesárová A.: Comparison of quasi–arithmetic means. In: Proc. EUROFUSE–SIC’98, Budapest 1999, pp. 237–240

[32] Kolesárová A.: Limit properties of quasi–arithmetic means. In: Proc. EUFIT’99, Aachen, 1999 (CD–rom)

[33] Kolesárová A., Komorníková M.: Triangular norm–based iterative compensatory operators. Fuzzy Sets and Systems 104 (1999), 109–120 | DOI | Zbl

[34] Komorníková M.: Generated aggregation operators. In: Proc. EUSFLAT’99, Palma de Mallorca 1999, pp. 355–357

[35] Komorníková M.: Smoothly generated discrete aggregation operators. BUSEFAL 80 (1999), 35–39

[36] Ling C. M.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 | MR

[37] Mareš M.: Computation over Fuzzy Quantities. CRC Press, Boca Raton 1994 | MR | Zbl

[38] Marko V., Mesiar R.: A note on a nilpotent lower bound of nilpotent triangular norms. Fuzzy Sets and Systems 104 (1999), 27–34 | MR | Zbl

[39] Marko V., Mesiar R.: Lower and upper bounds of continuous Archimedean $t$-norms. Fuzzy Sets and Systems, to appear | MR

[40] Marková A.: A note on $g$-derivative and $g$-integral. Tatra Mt. Math. Publ. 8 (1996), 71–76 | MR | Zbl

[41] Marková A.: $T$-sum of $L$-$R$-fuzzy numbers. Fuzzy Sets and Systems 85 (1997), 379–384 | DOI | MR

[42] Marková–Stupňanová A.: A note on idempotent functions with respect to pseudo–convolution. Fuzzy Sets and Systems 102 (1999), 417–421 | MR

[43] Menger K.: Statistical metrics. Proc. Nat. Acad. Sci. U. S. A. 8 (1942), 535–537 | DOI | MR | Zbl

[44] Mesiar R.: A note on $T$-sum of $L$-$R$ fuzzy numbers. Fuzzy Sets and Systems 79 (1996), 259–261 | DOI | MR

[45] Mesiar R.: Triangular norm–based addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 231–237 | DOI | MR | Zbl

[46] Mesiar R.: Approximation of continuous $t$-norms by strict $t$-norms with smooth generators. BUSEFAL 75 (1998), 72–79

[47] Mesiar R.: On the pointwise convergence of continuous Archimedean $t$-norms and the convergence of their generators. BUSEFAL 75 (1998), 39–45

[48] Mesiar R.: Generated conjunctions and related operators in MV-logic as a basis of AI applications. In: Proc. ECAI’98, Brighton 1998, Workshop WG17

[49] Mesiar R., Navara M.: $T_s$-tribes and $T_s$-measures. J. Math. Anal. Appl. 201 (1996), 91–102 | DOI | MR

[50] Mesiar R., Navara M.: Diagonals of continuous triangular norms. Fuzzy Sets and Systems 104 (1999), 35–41 | DOI | MR | Zbl

[51] Mostert P. S., Shields A. L.: On the structure of semigroups on a compact manifold with boundary. Ann. of Math. 65 (1957), 117–143 | DOI | MR

[52] Nguyen H. T., Kreinovich V., Wojciechowski T.: Strict Archimedean $t$-norms and $t$-conorms as universal approximators. Internat. J. Approx. Reason. 18 (1998), 239–249 | DOI | MR | Zbl

[53] Pap E.: $g$-calculus. Univ. u Novom Sadu Zb. Rad. Prirod.–Mat. Fak. Ser. Mat. 23 (1993), 145–156 | MR | Zbl

[54] Schweizer B., Sklar A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313–334 | DOI | MR | Zbl

[55] Schweizer B., Sklar A.: Associative functions and triangle inequalities. Publ. Math. Debrecen 8 (1961), 169–186 | MR

[56] Schweizer B., Sklar A.: Associative functions and abstract semigroups. Publ. Math. Debrecen 10 (1963), 69–81 | MR

[57] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 | MR | Zbl

[58] Sklar A.: Fonctions de répartition a $n$-dimensions et leurs marges. Publ. Inst. Stat. Univ. Paris 8 (1959), 229–231 | MR

[59] Smutná D., Vojtáš P.: Fuzzy resolution with residuation of material implication. In: Proc. EUROFUSE–SIC’99, Budapest 1999, pp. 472–476

[60] Tardiff R. M.: On a generalized Minkowski inequality and its relation to dominates for $t$-norms. Aequationes Math. 27 (1984), 308–316 | DOI | MR | Zbl

[61] Viceník P.: A note on generators of $t$-norms. BUSEFAL 75 (1998), 33–38

[62] Viceník P.: Additive generators and discontinuity. BUSEFAL 76 (1998), 25–28

[63] Viceník P.: Additive generators of triangular norms with an infinite set of discontinuity points. In: Proc. EUROFUSE–SIC’99, Budapest 1999, pp. 412–416

[64] Viceník P.: Generated $t$-norms and the Archimedean property. In: Proc. EUFIT’99, Aachen 1999 (CD–rom)

[65] Viceník P.: Non–continuous generated $t$-norms. In: Abstracts of Linz’98 “Topological and Algebraic Structures”, Linz 1999, pp. 9–10

[66] Viceník P.: Additive generators of non–continuous triangular norms. Preprint, submitted | Zbl

[67] Yager R. R.: On a general class of fuzzy connectives. Fuzzy Setsna and Systems 4 (1980), 235–242 | DOI | MR | Zbl

[68] Zadeh L. A.: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177–200 | DOI | MR | Zbl

[69] Zadeh L. A.: The concept of linguistic fuzzy variable and its applications to approximate reasoning. Part I. Inform. Sci. 8 (1975), 199–261 | MR